Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Efficient photocatalytic hydrogen evolution under visible light by ternary composite CdS@NU-1000/RGO

Partha Pratim Baga,b#,* Xu-Sheng Wanga,#, Pathik Sahoob Jinhua Xiongc and Rong Caoa,*

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, P. R. China. E-mail: parthap.bag82@yahoo.com, (PPB), rcao@fjirsm.ac.cn; Fax: +86-591-83796710; Tel: +86-591-83725186.

^bMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

cState Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China.

[#]P. P. Bag and X. –S. Wang contributed equally to this work.

Synthesis of 1,3,6,8-tetrakis(p-benzoic acid)pyrene 1,3,6,8-tetrakis(pbenzoic acid) pyrene (TBAPy).

Scheme S1. Synthetic procedure of TBAPy.

The synthesis was performed according to the previous literature.¹⁵ (The ref. belongs to main draft)

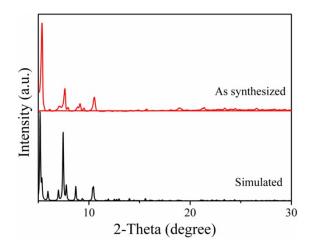


Figure S1. The XRD pattern of NU-1000.

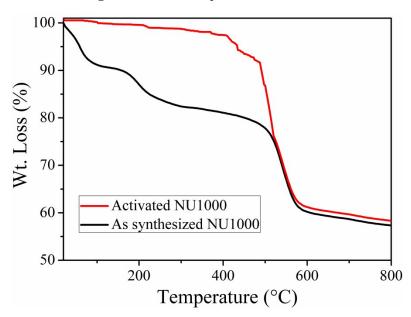


Figure S2. The thermogravimetric graph of NU-1000 under nitrogen atmosphere.

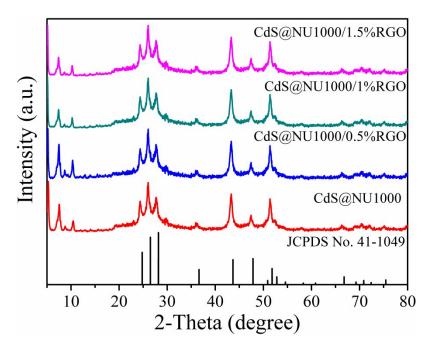


Figure S3. The PXRD of CdS contained composites.

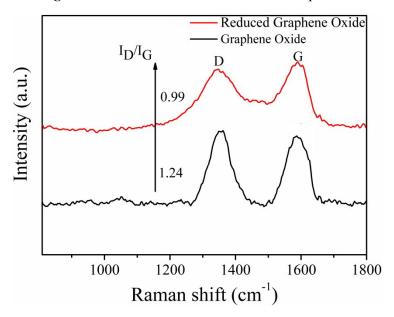
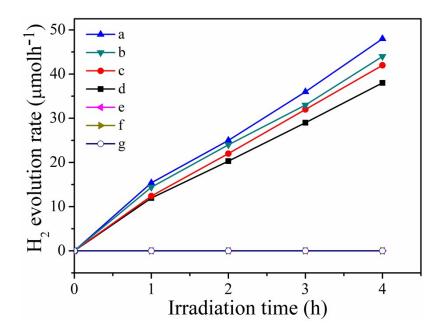
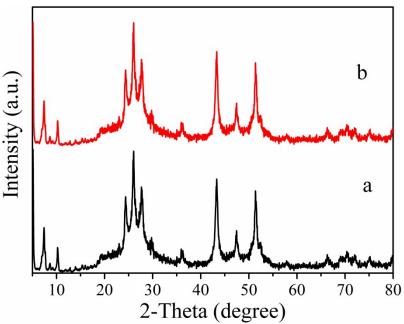




Figure S4. The Raman spectra of GO and RGO.

 $\label{eq:figure} \textbf{Figure} \quad \textbf{S5.} \quad \text{The hydrogen production activity of (a) CdS@NU-1000/1%RGO; (b) CdS@NU100/1.5%RGO; (c) CdS@NU-1000/0.5%RGO; (d) CdS@NU-1000; (e) NU-1000; (f) RGO; (g) CdS@NU-1000/1%RGO in the dark.}$

Figure S6. The PXRD patterns of (a) fresh CdS@NU-1000/1%RGO and (b) CdS@NU-1000/1%RGO after water splitting reaction without the addition of sacrificial agents.

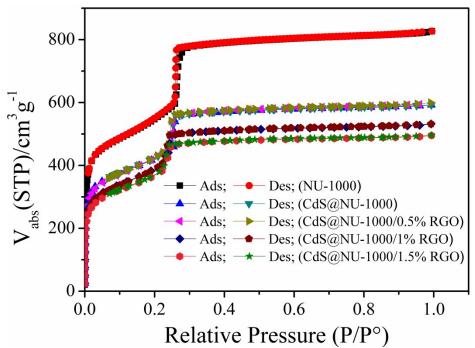


Figure S7 The N₂ adsorption/desorption isotherms.

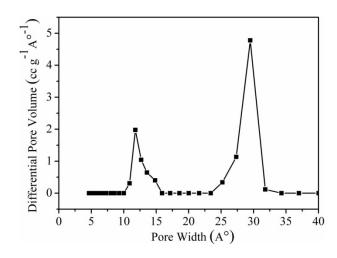
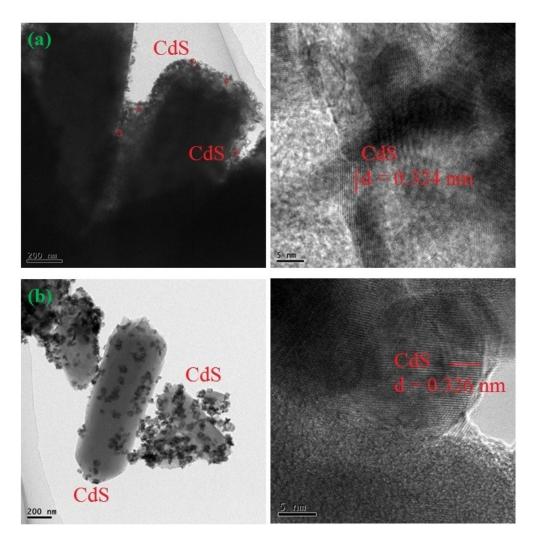



Figure S8 Pore width of NU-1000.

Figure S9. The TEM and HRTEM image of (a) H-CdS@NU-1000/1%RGO and (b) L-CdS@NU-1000/1%RGO.

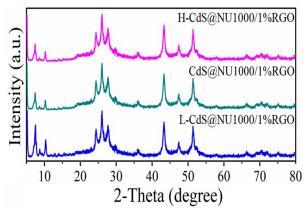
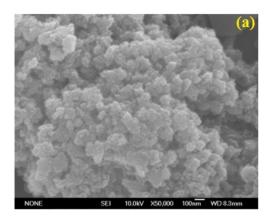



Figure S10. PXRD pattern of all three composite materials.

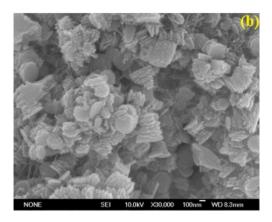
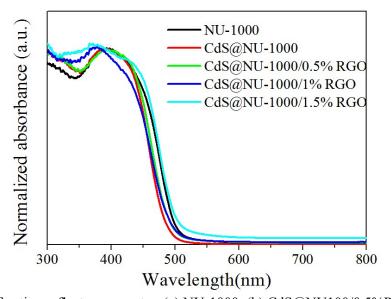



Figure S11.(a) The SEM graph of CdS@NU-1000 and (b)The SEM graph of CdS@NU-1000/1%RGO.

Figure S12.The diffraction reflectance spectra: (a) NU-1000; (b) CdS@NU100/0.5%RGO; (c)CdS@NU-1000; (d)CdS@NU-1000/1%RGO; (e) CdS@NU-1000/1.5%RGO.

Table. S1 The weight ration of CdS and NU-1000 and their activity

Samples	CdS:NU-1000 (wt/wt)	Activity (μmol h ⁻¹)	CdS wt%	Activity (mmol g _{CdS} ⁻¹ h ⁻¹) /Times of activity over CdS
L-CdS@NU-1000/1%RGO	1:12.5	5.9	7.39	1.60/ 8.0
CdS@NU-1000/1%RGO	1:9.1	12	9.93	2.42/12.1
H-CdS@NU-1000/1%RGO	1:4.8	8.55	17.36	0.99/ 4.95

Quantum efficiency calculations.

In the following we describe the QE determination at λ_0 =420 nm for CdS@NU-1000/1% RGO. The catalyst solution was irradiated by a 300W Xe lamp applying a $\lambda_0\pm7.5$ nm band-pass filter for 4 hours. The average intensity of irradiation was determined to be 163.7 mW·cm⁻² by a light intensity meter, and the irradiation area was 18.09 cm². The number of incident photons (N) is 2.25×10^{22} as calculated by equation (1). The amount of H₂ molecules generated per hour was 2.56 µmol. The quantum efficiency is calculated from equation (2).

$$N=E\mathcal{N}(hc) \qquad (1)$$

$$QE = 2 \times \frac{\text{the number of evolved } H_2 \text{ molecules}}{\text{the number of incident photons}} \times 100 \% \qquad (2)$$

Table. S2

CdS@NU-	Activity	QE
1000/1% RGO	(µmol/h)	
420 nm	2.56	0.0137%
450 nm	2.24	0.0114%
475 nm 1.63		0.0073%

Table. S3 The mass fraction of CdS in the composite

Samples	Cd wt% (ICP)	S wt% (Elemental Analysis)	CdS wt%
CdS@NU-1000	5.72	4.46	10.18
CdS@NU-1000/1%RGO	5.67	4.26	9.93
L-CdS@NU-1000/1%RGO	4.14	3.25	7.39
M-CdS@NU-1000/1%RGO	11.77	5.59	17.36