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Table S1. The comparison of activity and selectivity over Pd(II)/NaY and Pd(0)/NaY 

catalysts

Pd(II) samples Pd(0) samples
Catalysts

C1 C2 C3 C4 C5 C6

Conversion 
of CO (%) 60.1 56.1 53.9 52.1 46.8 39.6

SelDMC (%) 99.9 99.8 99.5 33.3 21.4 29.7

SelDMO (%) 0.01 0.02 0.05 66.7 78.6 70.3

Reaction conditions: 120 °C, 0.1 MPa, 200 mg catalyst, weight hour space velocity 

(WHSV) = 1440 L·kgcat.
-1·h-1, CO: MN: Ar: N2 = 16.9%: 51.6%: 2.4%: 29.1%.

Figure S1. The EDX image of fresh C1 catalyst.



Figure S2. The in-situ DRIR spectra of CO adsorption on C1 catalyst.

Figure S3. The in-situ DRIR spectra of the reaction between CO and MN on C1 
catalyst at 120 °C.



Computational details

All geometry optimizations were performed with the hybrid density functional 

theory (DFT) at the level of B3LYP.1-2 The 6-311+G(d, p) all-electron basis sets3 

were employed for the main group elements, and the corresponding basis sets with the 

Stuttgart/Dresden effective-core potentials (SDD)4-6 were employed for the transition 

metal palladium. The subsequent analytical harmonic frequency calculations were 

performed at the same level of theory to ensure that each geometry corresponds to a 

true local minimum. All calculations were performed by using the Gaussian 09 suite 

of program.
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