Electronic Supplementary Information for:

One-pot Suzuki-Heck relay to prepare industrially valuable intermediates using the Pd-Cy*Phine catalyst system

Uttam K. Das,^a Roxanne Clément,^a Charles W. Johannes,^b Edward G. Robins,^c Howard Jong^{*,b} and R. Tom Baker^{*,a}

^a Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. Email: rbaker@uottawa.ca

^b Organic Chemistry, Institute of Chemical & Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove Neuros #07-01, Singapore 138665. Email: howard_jong@ices.a-star.edu.sg ^c Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, Helios, #02-02, Singapore 138667

Table of Contents

Experimental	S2
General methods and materials	S2
General procedure for Suzuki coupling	S2
Figure S1. Results of product yields for Suzuki reaction with 3a (HTS 1)	S5
Table S1: Product yields for Suzuki coupling of 3a	S6
Figure S2. Results of product yields for Suzuki reaction with 3b (HTS 1)	S7
Table S2: Product yields for Suzuki coupling of 3b	S8
General procedure for one-pot Suzuki-Heck Relay (SHR) reaction	S9
Table S3: Product yields for Suzuki-Heck relay reaction with 3a	S10
Table S4: Conversion values for the Suzuki-Heck relay reaction with 3b	S11
Representative procedure for scale-up Suzuki-Heck Relay (SHR) reaction	S12
NMR spectra of one-pot Suzuki-Heck Relay products	S14
References	S20

Experimental:

General methods and materials. All reactions were performed under nitrogen atmosphere in a glovebox. Commercial reagents were purchased from Aldrich and used without further purification; solvents were obtained from a solvent purification system (< 2.0 ppm of H_2O) and acetonitrile was dried by refluxing over CaH₂, distilled and further dried over activated Al₂O₃. Solid bases and boron reagents were dispensed by Unchained Labs' Freeslate system using the SV-vial technology, with the exception of the vinylboronic anhydride complex, which was weighted out manually; liquid reagents and solutions were dispensed by pipette. Reactions were conducted in 1.2 mL glass shell vials equipped with parylene-coated stir bars in 96-well aluminum plates, which were sealed with a PFA sheet, rubber gasket, and top stainless steel plate. HPLC analysis was performed on an Agilent 1100 system equipped with a DAD detector, GC-FID analysis on an Agilent 6850 instrument, and GC/MS analysis on an Agilent 6890/5975 instrument. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 MHz Bruker Avance instrument at room temperature (21-25°C). NMR spectra were referenced to the residual proton peaks associated with the deuterated solvents (for ¹H NMR, CDCl₃: 7.26 ppm and for ¹³C NMR, CDCl₃: 77.16 ppm). ¹⁹F NMR spectra were referenced to internal 1,3bis(trifluoromethyl)benzene (BTB) (Aldrich, 99%, deoxygenated by purging with nitrogen, stored over activated 4 Å molecular sieves), set to -63.5 ppm. For electron impact highresolution mass spectra (HRMS-EI), solid samples were prepared by drying products under vacuum, and a Kratos Concept S1 (Hres 7000–10000) mass spectrometer was used.

General procedure for Suzuki coupling: Substrate concentration was 0.25 M, with 1.2 equivalents of boron coupling reagent (0.4 equivalents for the vinylboronic anhydride complex) and 2.0 equivalents of base. Phenanthrene was used as internal standard, and the catalyst solution was prepared in toluene at room temperature. The plate was sealed and heated/stirred at 90 °C for 12 hours. After cool-down, aliquots of 10 uL were flushed through silica on a multi-well filtration plate with a 50:50 MeCN:MeOH solution to a total volume of about 800 uL.

For Suzuki coupling with methyl-4-chlorobenzoate, samples were analyzed by HPLC [Zorbax Extend C8 column (4.6 x 150 mm), THF:H₂O 40:60 at 1.5 mL/min, detection at 254 nm, column temperature of 30 $^{\circ}$ C];

For Suzuki coupling with 5-bromo-1-(tetrahydro-pyran-2-yl)-1*H*-indazole), substrate **4a** was prepared according to a previously reported procedure¹; samples were analyzed by HPLC [Zorbax Extend C8 column (4.6 x 150 mm), MeCN:H₂O 50:50 at 1.5 mL/min, detection at 254 nm, column temperature of 30 °C];

Figure S1. Solvent, base and vinylic boron reagent optimization for **HTS 1**. Reaction conditions: **3a** (0.125 mmol), boron reagent (0.150 mmol), base (0.250 mmol), solvent (475 μ L). Pd-Cy*Phine catalyst (25 μ L). Yields were calculated by HPLC using phenanthrene as the internal standard.

Table S1: Product yields for Suzuki coupling of methyl-4-chlorobenzoate (3a)

Entry	Reaction Vials	Solvent	Coupling reagent	Base	Yield 4a (%)	Starting Material 3a (%)
1	E1			K ₂ CO ₃	95.7	
2	E2		Vinylboronic acid pinacol ester	Cs ₂ CO ₃	97.1	
3	E3			NaHCO ₃	77.9	14.2
4	E4			Cy₂NMe	56.8	29.7
5	F1			K ₂ CO ₃	95.4	
6	F2		Potassium	Cs ₂ CO ₃	96.4	
7	F3		vinyltrifluoroborate	NaHCO ₃	54.5	36.5
8	F4	Dioxane:H ₂ O		Cy ₂ NMe	67.7	29.2
9	G1	Dioxalle.n ₂ O		K ₂ CO ₃	97.9	
10	G2		Vinylboronic acid	Cs ₂ CO ₃	92.4	
11	G3		dibutyl ester	NaHCO₃	90.5	
12	G4			Cy₂NMe	77.6	
13	H1			K ₂ CO ₃	98.6	
14	H2		Vinylboronic anhydride pyridine	Cs ₂ CO ₃	98.7	
15	H3		complex	NaHCO ₃	86.9	6.1
16	H4			Cy ₂ NMe	59.9	30.7
17	E5			K ₂ CO ₃	98.7	
18	E6		Vinylboronic acid	Cs ₂ CO ₃	83.6	
19	E7		pinacol ester	NaHCO ₃	29.4	54.3
20	E8			Cy ₂ NMe	3.6	86.7
21	F5			K ₂ CO ₃	55.0	29.2
22	F6		Potassium	Cs ₂ CO ₃	8.0	55.2
23	F7		Vinyltrifluoroborate MF Vinylboronic acid dibutyl ester	NaHCO ₃	66.9	26.4
24	F8	DME		Cy ₂ NMe	21.7	59.9
25	G5	DMF		K ₂ CO ₃	82.8	
26	G6			Cs ₂ CO ₃	19.6 (55.0) ¹	
27	G7			NaHCO ₃	73.3	
28	G8			Cy ₂ NMe	7.2	76.9
29	H5			K ₂ CO ₃	94.6	
30	H6		Vinylboronic	Cs ₂ CO ₃	50.2	13.8
31	H7		anhydride pyridine complex	NaHCO ₃	52.6	36.3
32	H8		complex	Cy ₂ NMe	5.8	88.1
33	E9			K ₂ CO ₃	97.6	
34	E10		Vinylboronic acid	Cs ₂ CO ₃	70.4	
35	E11		pinacol ester	NaHCO ₃	4.5	97.5
36	E12			Cy ₂ NMe	3.6	90.4
37	F9			K ₂ CO ₃	100.4	
38	F10	MeCN	Potassium	Cs ₂ CO ₃	7.3	35.0
39	F11		vinyltrifluoroborate	NaHCO ₃	33.9	34.0
40	F12			Cy ₂ NMe	24.9	74.9
41	G9			K ₂ CO ₃	87.1	
42	G10		Vinylboronic acid dibutyl ester	Cs_2CO_3	48.0 (30.4) ²	
43	G11		ulbulyi ester	NaHCO ₃	41.1	40.5

44	G12			Cy ₂ NMe	5.4	83.6
45	H9		Vinylboronic anhydride pyridine complex	K ₂ CO ₃	92.4	
46	H10			Cs ₂ CO ₃	40.9	
47	H11			NaHCO ₃	21.3	70.6
48	H12			Cy ₂ NMe	5.4	88.6

¹ Estimated yield for 4-vinyl-benzoic acid butyl ester

4-vinyl benzoic acid butyl ester was observed in two of the reactions (*Table S1*, entries 26 and 42), both involving the vinylboronic acid dibutyl ester and Cs_2CO_3 in MeCN and DMF – identification established by GC/MS analysis.

Figure S2. Solvent, base and vinylic boron reagent optimization for **HTS 1**. Reaction conditions: **3b** (0.125 mmol), boron reagent (0.150 mmol), base (0.250 mmol), solvent (475 μ L). Pd-Cy*Phine catalyst (25 μ L). Yields were calculated by HPLC using phenanthrene as the internal standard and quantified through the calibration curves.

Table S2: Product yields for Suzuki coupling of 5-bromo-1-(tetrahydro-pyran-2-yl)-1H-indazole(3b)

Entry	Reaction Vials	Solvent	Coupling reagent	Base	Yield 4b (%) ¹	Starting material 3b (%)
1	A1			K ₂ CO ₃	86.5	
2	A2		Vinylboronic acid	Cs ₂ CO ₃	81.5	
3	A3		pinacol ester	NaHCO₃	26.4	28.1
4	A4			Cy ₂ NMe	44.4	
5	B1			K ₂ CO ₃	49.1	
6	B2		Potassium	Cs_2CO_3	66.4	
7	B3		vinyltrifluoroborate	NaHCO ₃	32.5	31.6
8	B4	Discussed 10		Cy₂NMe	73.9	
9	C1	Dioxane:H ₂ O		K ₂ CO ₃	75.9	
10	C2		Vinylboronic acid	Cs_2CO_3	81.2	
11	C3		dibutyl ester	NaHCO ₃	34.3	16.1
12	C4			Cy₂NMe	44.9	
13	D1			K ₂ CO ₃	82.2	
14	D2		Vinylboronic	Cs_2CO_3	86.2	
15	D3		anhydride pyridine complex	NaHCO ₃	33.6	
16	D4		complex	Cy₂NMe	49.4	
17	A5			K ₂ CO ₃	87.3	
18	A6		Vinylboronic acid	Cs ₂ CO ₃	69.1	
19	A7		pinacol ester	NaHCO ₃	46.2	
20	A8			Cy₂NMe	22.2	
21	B5			K ₂ CO ₃	74.6	
22	B6		Potassium	Cs ₂ CO ₃	67.3	
23	B7		DMF Vinylboronic acid dibutyl ester	NaHCO ₃	61.3	
24	B8	5.45		Cy₂NMe	58.0	
25	C5	DMF		K ₂ CO ₃	77.1	
26	C6			Cs ₂ CO ₃	72.6	
27	C7			NaHCO ₃	54.0	
28	C8			Cy₂NMe	27.2	
29	D5			K ₂ CO ₃	72.0	
30	D6		Vinylboronic	Cs ₂ CO ₃	31.1	
31	D7		anhydride pyridine complex	NaHCO ₃	70.4	
32	D8		complex	Cy ₂ NMe	45.6	
33	A9			K ₂ CO ₃	81.2	
34	A10		Vinylboronic acid	Cs ₂ CO ₃	71.8	
35	A11		pinacol ester	NaHCO ₃	5.6	61.3
36	A12			Cy ₂ NMe	13.8	14.3
37	B9	MeCN		K ₂ CO ₃	65.6	20.0
38	B10		Potassium	Cs ₂ CO ₃	61.3	
39	B11		vinyltrifluoroborate	NaHCO ₃	47.5	28.7
40	B12			Cy ₂ NMe	43.5	50.8
41	C9		Vinylboronic acid	K ₂ CO ₃	72.3	

42	C10		dibutyl ester	Cs_2CO_3	72.2	
43	C11			NaHCO ₃	17.2	31.7
44	C12			Cy ₂ NMe	19.1	
45	D9			K ₂ CO ₃	68.5	
46	D10		Vinylboronic anhydride pyridine complex	Cs ₂ CO ₃	39.9	
47	D11	an		NaHCO ₃	19.1	64.9
48	D12			Cy ₂ NMe	38.2	

¹Does not include values for 4c for entries 1-4, 17-18, 33-36

General procedure for Suzuki-Heck Relay (SHR) reaction: Substrate concentration was 0.25 M, with 1.01 equivalent of boron coupling reagent (0.33 equivalents for the vinylboronic anhydride complex). For combinations involving a single base, 5.0 equivalents were added at the beginning; for dual base combinations, 2.0 equivalents of each base were added at each step. Phenanthrene was used as internal standard, and the catalyst solution was prepared in toluene at room temperature. The plate was sealed and heated/stirred at 90 °C overnight. 1.1 equivalent of 3-chloropyridine and Cy₂NMe were added as required. The plate was re-sealed and heated/stirred at 120 °C overnight. After cool-down, aliquots of 10 uL were flushed through silica on a multi-well filtration plate with a 50:50 MeCN:MeOH solution to a total volume of about 500 uL. An additional equivalent of the catalyst solution was added to the reactions and the plate was run once again overnight at 120 °C, after which a second set of aliquots was filtered/diluted. Reactions were analyses by GC-FID [inlet = 250 °C; split ratio = 50:1; inlet pressure = 13.0 psi; oven initial temperature = 65 °C, program holds initial temperature for 0.5 minute, then ramp (40 °C/min) to 150 °C, held for 0.5 minute, ramp (45 °C/min) to 250 °C, held for 2.5 minutes, ramp (45 °C/min) to 275 °C, held for 1.5 minutes (total runtime of 9.91 minutes); detector temperature = $275 \degree C$];

Table S3: Product yields for the Suzuki-Heck relay reaction of methyl-4-chlorobenzoate with 3-chloropyridine

Entry	Reaction vial	Solvent	Coupling reagent	Base	Yield 5 (%)	Yield 5' (%)
1	A1			K ₂ CO ₃	-	11.0
2	B1		Vinylboronic acid	K ₂ CO ₃ , Cy ₂ NMe	10.8	25.3
3	C1			NaHCO ₃	16.4	26.7
4	D1		pinacol ester	NaHCO ₃ , Cy ₂ NMe	11.9	62.8
5	E1			Cs ₂ CO ₃ , Cy ₂ NMe	20.7	29.9
6	F1			Cy₂NMe	3.0	-
7	A2			K ₂ CO ₃	-	18.2
8	B2			K ₂ CO ₃ , Cy ₂ NMe	8.2	-
9	C2		Potassium	NaHCO ₃	17.5	13.4
10	D2		vinyltrifluoroborate	NaHCO ₃ , Cy ₂ NMe	9.9	68.1
11	E2			Cs ₂ CO ₃ , Cy ₂ NMe	-	24.8
12	F2	Dioxane		Cy ₂ NMe	14.1	-
13	A3			K ₂ CO ₃	-	30.0
14	B3			K ₂ CO ₃ , Cy ₂ NMe	-	30.0
15	C3		Vinylboronic acid	NaHCO₃	10.5	53.9
16	D3		dibutyl ester	NaHCO ₃ , Cy ₂ NMe	19.0	42.1
17	F3			Cy₂NMe	-	15.1
18	A4			K ₂ CO ₃	10.9	43.8
19	B4		Vinylboronic	K ₂ CO ₃ , Cy ₂ NMe	71.7	92.5
20	C4			NaHCO ₃	-	22.5
21	D4		anhydride pyridine complex	NaHCO ₃ , Cy ₂ NMe	9.5	34.4
22	E4		complex	Cs ₂ CO ₃ , Cy ₂ NMe	-	12.9
23	F4			Cy ₂ NMe	7.8	19.6
24	A5			K ₂ CO ₃	5.2	8.4
25	B5			K ₂ CO ₃ , Cy ₂ NMe	25.9	70.3
26	C5		Vinylboronic acid	NaHCO ₃	64.4	70.4
27	D5		pinacol ester	NaHCO ₃ , Cy ₂ NMe	69.5	75.8
28	E5			Cs ₂ CO ₃ , Cy ₂ NMe	14.8	25.1
29	A6			K ₂ CO ₃	11.8	20.2
30	B6			K ₂ CO ₃ , Cy ₂ NMe	16.3	40.5
31	C6		Potassium	NaHCO ₃	11.8	32.7
32	D6	DMF	vinyltrifluoroborate	NaHCO ₃ , Cy ₂ NMe	19.0	36.5
33	F6			Cy ₂ NMe	5.9	12.1
34	A7			K ₂ CO ₃	-	-
35	B7		Vinylboronic acid	K ₂ CO ₃ , Cy ₂ NMe	6.8	27.6
36	C7		dibutyl ester	NaHCO ₃	50.8	79.5
37	D7			NaHCO ₃ , Cy ₂ NMe	38.0	72.0
38	A8		Vinylboronic	K ₂ CO ₃	6.9	43.4
39	B8		anhydride pyridine	K ₂ CO ₃ , Cy ₂ NMe	61.1	87.5
40	C8		complex	NaHCO ₃	31.1	75.1

41	D8			NaHCO ₃ , Cy ₂ NMe	23.3	56.2
42	E8			Cs ₂ CO ₃ , Cy ₂ NMe	28.6	37.5
43	A9			K ₂ CO ₃	-	-
44	B9		Vinylboronic acid pinacol ester	K ₂ CO ₃ , Cy ₂ NMe	-	12.2
45	E9		pinacorester	Cs ₂ CO ₃ , Cy ₂ NMe	-	10.3
46	A10			K ₂ CO ₃	-	5.7
47	B10			K ₂ CO ₃ , Cy ₂ NMe	3.5	16.5
48	C10		Potassium vinyltrifluoroborate	NaHCO ₃	47.0	69.7
49	D10		Vinyianaoroborate	NaHCO ₃ , Cy ₂ NMe	18.3	34.4
50	F10			Cy ₂ NMe	-	11.3
51	A11			K ₂ CO ₃	-	-
52	B11		Vinylboronic acid dibutyl ester	K ₂ CO ₃ , Cy ₂ NMe	-	13.2
53	C11			NaHCO ₃	61.1	70.3
54	D11	Acetonitrile		NaHCO ₃ , Cy ₂ NMe	44.1	55.6
55	A12	Acetomine		K ₂ CO ₃	-	4.8
56	B12		Vinylboronic	K ₂ CO ₃ , Cy ₂ NMe	33.4	62.0
57	C12		anhydride pyridine	NaHCO ₃	35.6	57.9
58	D12		complex	NaHCO ₃ , Cy ₂ NMe	22.7	42.7
59	E12			Cs ₂ CO ₃ , Cy ₂ NMe	4.5	9.6

4-vinyl benzoic acid butyl ester was observed in three of the reactions (*Table S3*, entries *3*, *7*, and *11*); the corresponding Suzuki-Heck product was only observed in the case of entry 3 (confirmed by GC/MS). Yield **5'** (%) = increased yield (%) of compound **5** after addition of more catalyst.

Table S4: Conversion values for the Suzuki-Heck relay reaction of 5-bromo-1-(tetrahydropyran-2-yl)-1H-indazole with 3-chloropyridine

Entry	Bases	Solvent	Coupling reagent	GC/MS conversion (%)
1		DMF	Vinylboronic anhydride pyridine complex	91
2	K ₂ CO ₃ /Cy ₂ NMe	Dioxane	Vinylboronic anhydride pyridine complex	89
3		DMF	Vinylboronic acid pinacol ester	92

Representative procedure for scale-up Suzuki-Heck Relay (SHR) reaction: An 8 ml vial fitted with a Teflon-lined septum and a magnetic stir bar was charged with aryl halide (0.5 mmol, 1 equiv.), vinylboronic anhydride pyridine complex (0.165 mmol, 0.33 equiv.), K_2CO_3 (1 mmol, 2 equiv.), TBAB (0.1 mmol, 0.2 equiv.), DMF (1.9 mL), Pd-Cy*Phine catalyst (100 μ L, 1 mol% Pd(OAc)₂ + 2 mol% Cy*Phine) [the catalyst solution was prepared *in situ* by dissolving Pd(OAc)₂ (12 mg, 0.05 mmol) and Cy*Phine (52 mg, 0.1 mmol) in toluene (1000 μ L)]. The vial was sealed and then heated at 90 °C for 12 h. An aliquot of the reaction mixture was sampled for GC-MS analysis to determine the Suzuki completion. To the same vial, aryl halide (0.55 mmol, 1.1 equiv.) and Cy₂NMe (1 mmol, 2 equiv.) and Pd-Cy*Phine catalyst (100 μ L) were added. The vial was sealed and allowed to heat at 110 °C for another 12 h. The completion of the Heck reaction was confirmed by GC/MS analysis. The reaction mixture was diluted with CH₂Cl₂ (15 mL) and the solution was transferred to a separatory funnel (150 mL). The dilute solution was then washed with water (3 × 15 mL) and dried over anhydrous MgSO₄. CH₂Cl₂ was removed *in vacuo* to afford the crude mixture which was finally purified by flash chromatography to obtain the desired product.

(E)-Methyl 4-(2-(pyridin-3-yl)vinyl)benzoate (5): off-white solid, yield (78%). The spectroscopic

data (¹H and ¹³C NMR) of **5** are identical to those reported in literature.² HRMS (EI) calcd for $C_{15}H_{13}NO_2^+$ [M]⁺: 239.0946, found: 239.0939.

(*E*)-1-(tetrahydropyran-2-yl)-(2-(pyridine-3-yl)vinyl)-1H-indazole (6): brown solid, yield (40%). ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.46 (d, J = 4.5 Hz, 1H), 8.02 (s, 1H), 7.81 (dt, J = 8.0 Hz, 1H), 7.78 (s, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.27 (d, J = 12.8 Hz, 1H), 7.24 (d, J = 16.5 Hz, 1H), 7.03 (d, J = 16.5 Hz, 1H), 5.71 (dd, J = 9.5, 2.7 Hz, 1H), 4.05-4.01 (m, 1H), 3.78-3.71 (m, 1H), 2.61-2.51 (m, 1H), 2.18-2.03 (m, 2H),

1.82–1.61 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.41, 148.31, 139.39, 134.30, 133.20, 132.46, 131.02, 130.35, 125.21, 124.94, 123.63, 123.55, 119.87, 110.61, 85.47, 77.29, 67.49, 29.44, 25.12, 22.56. HRMS (EI) calcd for C₁₉H₁₉N₃O⁺ [M]⁺: 305.1528, found: 305.1498.

(E)-2-amino-(2-(1-tetrahydropyran-2-yl-1H-indazole)vinyl) pyrimidine (7): yellow solid, yield THP (50%). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 2H), 8.01 (s, 1H), 7.75 (s, 1H), 7.61–7.56 (m, 2H), 7.09 (d, J = 16.5 Hz, 1H), 6.87 (d, J = 16.5 Hz, 1H), 5.71 (dd, J = 9.4, 2.7 Hz, 1H), 5.13 (s br, 2H), 4.06– 4.02 (m, 1H), 3.79–3.73 (m, 1H), 2.63–2.52 (m, 1H), 2.19–2.06 (m, 2H), 1.84–1.63 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.87, 156.01, 139.22, 134.24, 130.59, 127.87, 125.24, 124.77, 122.06,

120.75, 119.31, 110.56, 85.48, 77.22, 67.51, 29.45, 25.14, 22.58. HRMS (EI) calcd for $C_{18}H_{19}N_5O^+$ [M]⁺: 321.1590, found: 321.1596.

(*E*)-2-(4-fluorobenzene)vinyl pyrazine (8): white solid, yield (40%). ¹H NMR (400 MHz, CDCl₃) δ = 8.62 (d, J = 1.5 Hz, 1H), 8.54 (dd, J = 2.5, 1.5 Hz, 1H), 8.41 (d, J = 2.5 Hz,

8.62 (d, J = 1.5 Hz, 1H), 8.54 (dd, J = 2.5, 1.5 Hz, 1H), 8.41 (d, J = 2.5 Hz, 1H), 7.72 (d, J = 16.0 Hz, 1H), 7.70 (s, 1H), 7.58 (d, J = 5.4 Hz, 1H), 7.56 (d, J = 5.4 Hz, 1H), 7.09 (t, J = 8.7 Hz, 2H), 7.07 (d, J = 16.0 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 164.52, 162.04, 151.26, 144.50, 143.89, 142.97, 134.08, 132.44 (d, J_{C-F} = 3.5 Hz), 129.13 (d, J_{C-F} = 8.1 Hz), 123.91

(d, $J_{C-F} = 2.3 \text{ Hz}$), 116.06 (d, $J_{C-F} = 21.8 \text{ Hz}$), 77.36. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.83. HRMS (EI) calcd for $C_{12}H_8N_2F^+$ [M-H]⁺: 199.0672, found: 199.0652.

(E)-Methyl 4-(9-phenyl carbazole)vinyl benzoate (10): lime green solid, yield (81%). ¹H NMR

(400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.16 (d, J = 7.5 Hz, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.62–7.55 (m, 7H), 7.49–7.44 (m, 2H), 7.41–7.37 (m, 3H), 7.32–7.28 (m, 1H), 7.16 (d, J = 16.5 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.16, 142.61, 141.55, 141.11, 137.60, 132.23, 130.21, 130.10, 129.71, 129.21, 129.03, 128.52, 127.81, 127.21, 126.43, 126.17, 125.43, 125.07, 123.97, 123.44, 120.53, 120.44, 119.17, 110.27, 110.18, 77.36, 52.19, 14.37.

HRMS (EI) calcd for C₂₈H₂₁NO₂ [M]⁺: 403.1572, found: 403.1546.

S14

¹³C NMR (100 MHz, CDCl₃) spectrum of **8**

(E)-2-(4-fluorobenzene)vinyl pyrazine (8)

¹⁹F NMR (376 MHz, CDCl₃) spectrum of **8**

¹³C NMR (100 MHz, CDCl₃) spectrum of **10**

 ^1H NMR (300 MHz, CDCl3) spectrum of mixture of Suzuki product and homocoupling byproduct

References:

- 1. D. J. Slade, N. F. Pelz, W. Bodnar, J. W. Lampe and P. S. Watson, *J. Org. Chem.* 2009, **74**, 6331-6334.
- 2. C. I. Traficante, C. Fagundez, G. L. Serra, E. G. Mata and C. M. L. Delpiccolo, ACS Comb. Sci. 2016, 18, 225–229.