Electronic supplementary information (ESI) for the manuscript:

Insight into the effect of incorporation of boron in ZSM-11 on its catalytic

performance for conversion of methanol to olefins

Sen Wang ^{a,b,†}, Shiying Li ^{a,b,†}, Li Zhang ^{a,b}, Zhangfeng Qin ^a, Mei Dong ^a, Junfen Li ^a, Jianguo Wang ^a, Weibin Fan ^{a,*}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, Shanxi 030001, PR China

^b University of Chinese Academy of Sciences, Beijing 100049, PR China

[†] These authors equally contributed to this work

* Corresponding author. Tel.: +86-351-4199009; Fax: +86-351-4041153

E-mail address: fanwb@sxicc.ac.cn

Table of contents:

- **Table S1.** Calculated proton affinity (PA) and ammonia adsorption energies (ΔE_{ads}) of the acid sites in AlZSM-11 and [B,Al]ZSM-11.
- Table S2. The contents of Brönsted and Lewis acid sites of AlZSM-11 (a) and [B,Al]ZSM-11 with different B/Al ratios, as measured by Py-IR at different temperature.
- **Table S3.** Calculated free energy barriers (ΔG_{int}^{\neq}) , relative rate constants (k), enthalpy barriers (ΔH_{int}^{\neq}) and entropy losses $(-T\Delta S_{int}^{\neq})$ at 723 K of each reaction step in the aromatic cycle of MTO process catalyzed by H-ZSM-11.
- **Table S4.** Calculated free energy barriers (ΔG_{int}^{\neq}) , relative rate constants (k), enthalpy barriers (ΔH_{int}^{\neq}) and entropy losses $(-T\Delta S_{int}^{\neq})$ at 723 K of each reaction step in

the alkene cycle of MTO process catalyzed by H-ZSM-11.

- **Table S5.** Calculated ²⁷Al NMR shielding tensors (δ_{ST} , ppm) and chemical shifts (δ_{CS} , ppm) of different T sites over ZSM-11.
- **Table S6.** Distributions of different types of Al species in AlZSM-11 and [B,Al]ZSM-11 with different B/Al ratios, as measured by DR UV-vis spectroscopy after being exchanged with Co²⁺.

Figure captions

- Fig. S1. Cluster models of AlZSM-11 (a) and [B,Al]ZSM-11 (b).
- Fig. S2. XRD patterns of AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.
- Fig. S3. SEM images of AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.
- **Fig. S4.** Nitrogen adsorption/desorption isotherms of AlZSM-11 and [B,Al]ZSM-11 with different B/Al ratios.
- **Fig. S5.** Framework IR spectra of AlZSM-11 (a) and [B,Al]ZSM-11 with different B/Al ratios.
- Fig. S6. Py-IR spectra collected at 423 K of AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.
- Fig. S7. Proposed aromatic and alkene cycles of MTO process catalyzed by H-ZSM-11.
- Fig. S8. Periodic model of silicalite-2 (pure-silica ZSM-11) (a); optimized AlZSM-11 structure with Al substituting Si at T1 site and charge-compensating Na⁺ cation located at O8 (b) and O9 (c).
- **Fig. S9.** Optimized AlZSM-11 structure with Al substituting Si at T2, T3 and T4 site, respectively.
- **Fig. S10.** Optimized AlZSM-11 structure with Al substituting Si at T5, T6 and T7 site, respectively.

- **Fig. S11.** ²⁷Al MAS NMR spectra of calcined AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.
- **Fig. S12.** Relationship between catalytic lifetimes of AlZSM-11 and [B,Al]ZSM-11 with different B/Al ratios and the area of the signal around 53.8 ppm in ²⁷Al MAS NMR spectra.

Table S1. Calculated proton affinity (PA) and ammonia adsorption energies (ΔE_{ads}) of the acid sites in AlZSM-11 and [B,Al]ZSM-11.

Models	PA (kJ mol ⁻¹)	$\Delta E_{\rm ads} ({\rm kJ} {\rm mol}^{-1})$
AlZSM-11	1104	-166
[B,Al]ZSM-11	1111	-157

Zeolites _	Py-IR (423 K) ^a		Py-IR (523 K) ^{<i>a</i>}		Py-IR (623 K) ^{<i>a</i>}	
	Brönsted	Lewis	Brönsted	Lewis	Brönsted	Lewis
B/Al=0.0	42	17	37	8	32	6
B/Al=1.0	59	21	45	6	33	6
B/Al=2.0	80	25	42	5	34	5
B/Al=8.0	117	17	48	6	36	4

Table S2. The contents of Br \ddot{a} nsted (μ mol g⁻¹) and Lewis acid sites (μ mol g⁻¹) of AlZSM-11 and [B,Al]ZSM-11 with different B/Al ratios, as measured by Py-IR at different temperature.

^{*a*} The contents of Brönsted and Lewis acid sites determined by Py-IR with the amounts of pyridine (Py) desorbed at 423, 523 and 623 K, respectively.

Table S3. Calculated free energy barriers (ΔG_{int}^{\neq}) , relative rate constants (*k*), enthalpy barriers (ΔH_{int}^{\neq}) and entropy losses $(-T\Delta S_{int}^{\neq})$ at 723 K of each reaction step in the aromatic cycle of MTO process catalyzed by H-ZSM-11.

	$\Delta G_{ m int}^{ eq}$ (kJ mol ⁻¹)	$k \ (\mathrm{s}^{-1})$	$\Delta H_{\rm int}^{\neq}$ (kJ mol ⁻¹)	$-T\Delta S_{\text{int}}^{\neq}$ (kJ mol ⁻¹)
AlZSM-11				
M0	96	1.66×10^{6}	97	-1
M1	119	3.68×10^4	98	21
M2	54	2.00×10^{9}	48	6
M3	67	2.01×10^{8}	56	11
D1	64	3.50×10^{8}	54	10
D2	98	1.32×10^{6}	80	18
E1	207	1.59×10^{-2}	195	12
[B,Al]ZSM-11				
M0	100	9.02×10^{5}	106	-6
M1	123	1.87×10^{4}	107	16
M2	53	2.31×10^{9}	46	7
M3	72	9.22×10^{7}	58	14
D1	60	7.61×10^{8}	57	3
D2	74	6.78×10^{7}	58	16
E1	195	1.34×10^{-1}	192	3

Note: only one acid site generated by replacing Al with Si at T1 site and locating charge-balancing proton at O9 over AlZSM-11, and two acid sites generated by replacing two Si atoms with one Al and one B atoms at adjacent T1 sites and locating two charge-balancing protons at O9 ions connected to Al and B, respectively, over [B,Al]ZSM-11 (only the acid site resulted from incorporation of Al catalyze the MTO reaction).

Table S4. Calculated free energy barriers (ΔG_{int}^{\neq}) , relative rate constants (*k*), enthalpy barriers (ΔH_{int}^{\neq}) and entropy losses $(-T\Delta S_{int}^{\neq})$ at 723 K of each reaction step in the alkene cycle of MTO process catalyzed by H-ZSM-11.

	$\Delta G_{ m int}^{ eq}$ (kJ mol ⁻¹)	$k \ (\mathrm{s}^{-1})$	$\Delta H_{\rm int}^{\neq}$ (kJ mol ⁻¹)	$-T\Delta S_{\text{int}}^{\neq}$ (kJ mol ⁻¹)
AlZSM-11				
M0	96	1.66×10^{6}	97	-1
M1	86	9.64×10^{6}	60	26
M2	78	3.73×10^{7}	54	24
M3	82	1.86×10^{7}	69	13
D1	41	1.58×10^{10}	52	-11
D2	44	1.08×10^{10}	56	-12
E1	96	1.79×10^{6}	132	-36
[B,A1]ZSM-11				
M0	100	9.02×10^{5}	106	-6
M1	80	2.32×10^{7}	61	19
M2	76	4.67×10^{7}	58	18
M3	88	6.55×10^{6}	69	19
D1	43	1.14×10^{10}	56	-13
D2	65	2.75×10^{8}	69	-4
E1	111	1.46×10^{5}	142	-31

Note: only one acid site generated by replacing Al with Si at T1 site and locating charge-balancing proton at O9 over AlZSM-11, and two acid sites generated by replacing two Si atoms with one Al and one B atoms at adjacent T1 sites and locating two charge-balancing protons at O9 ions connected to Al and B, respectively, over [B,Al]ZSM-11 (only the acid site resulted from incorporation of Al catalyze the MTO reaction).

T sitesShielding tensors $(\delta_{ST})^a$ Chemical shifts $(\delta_{CS})^b$ T1532.254.7T2530.456.5T3540.346.6T4529.857.1T5521.765.2T6529.957.0T7537.849.1			
T1532.254.7T2530.456.5T3540.346.6T4529.857.1T5521.765.2T6529.957.0T7537.849.1	T sites	Shielding tensors (δ_{ST}) ^{<i>a</i>}	Chemical shifts (δ_{CS}) ^b
T2530.456.5T3540.346.6T4529.857.1T5521.765.2T6529.957.0T7537.849.1	T1	532.2	54.7
T3540.346.6T4529.857.1T5521.765.2T6529.957.0T7537.849.1	Τ2	530.4	56.5
T4529.857.1T5521.765.2T6529.957.0T7537.849.1	Т3	540.3	46.6
T5521.765.2T6529.957.0T7537.849.1	T4	529.8	57.1
T6529.957.0T7537.849.1	Т5	521.7	65.2
T7 537.8 49.1	Т6	529.9	57.0
	Τ7	537.8	49.1

Table S5. Calculated ²⁷Al NMR shielding tensors (δ_{ST} , ppm) and chemical shifts (δ_{CS} , ppm) of different T sites over ZSM-11.

^{*a*} B3LYP/6-31G (d, p) method was adopted for geometry optimization of different T sites based on the 40T cluster models and B3LYP/DGDZVP with GIAO method was used for ²⁷Al NMR shielding tensors calculation.^{1,2}

^{*b*} The chemical shift of ²⁷Al NMR is obtained by the difference between the calculated chemical shift of Al(H₂O)₆³⁺ (586.9 ppm) and the shielding tensors of different T sites, viz., $\delta_{CS} = 586.9 - \delta_{ST}$.³

Table S6. Distributions of different types of Al species in AlZSM-11 and [B,Al]ZSM-11 with different B/Al ratios, as measured by DR UV-vis spectroscopy after being exchanged with Co²⁺.

Zeolites	Al _{close} (%) ^a	Al _{single} (%) ^a	α+γ type (%) ^b	β type (%) ^b
B/Al=0.0	57.1	42.9	56.5	43.5
B/Al=1.0	56.0	44.0	51.9	48.1
B/Al=2.0	65.7	34.3	40.4	59.6
B/Al=8.0	63.5	36.5	34.8	65.2

^{*a*} The fraction of Al_{close} or Al_{single} was calculated with the equations of $[Al_{close}]=2\times[Co_{max}]$ and $[Al_{single}]=[Al_{total}]-2\times[Co_{max}]$, respectively. $[Al_{total}]$ and $[Co_{max}]$ are the contents of Al and Co atoms in the Co²⁺-exchanged zeolites, as measured by the ICP-AES technique.

^{*b*} The distribution of various types (α , β , and γ) of Co²⁺ ions was determined by the deconvolution of DR UV-vis spectra of Co²⁺-exchanged ZSM-11 zeolites.

Fig. S1.

Fig. S1. Cluster models of AlZSM-11 (a) and [B,Al]ZSM-11 (b). Only one acid site generated by replacing Al with Si at T1 site and locating charge-balancing proton at O9 over AlZSM-11, and two acid sites generated by replacing two Si atoms with one Al and one B atoms at adjacent T1 sites and locating two charge-balancing protons at O9 ions connected to Al and B, respectively, over [B,Al]ZSM-11 (only the acid site resulted from incorporation of Al catalyze the MTO reaction).

Fig. S2.

Fig. S2. XRD patterns of AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.

(c)

(d)

Fig. S3. SEM images of AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.

Fig. S4.

Fig. S4. Nitrogen adsorption/desorption isotherms of AlZSM-11 and [B,Al]ZSM-11 with different B/Al ratios.

Fig. S5.

Fig. S5. Framework IR spectra of AlZSM-11 (a) and [B,Al]ZSM-11 with different B/Al ratios.

Fig. S6.

Fig. S6. Py-IR spectra collected at 423 K of AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.

Fig. S7.

Fig. S7. Proposed aromatic and alkene cycles in MTO process catalyzed by H-ZSM-11.

Fig. S8.

(•)

Fig. S8. Periodic model of silicalite-2 (pure-silica ZSM-11) (a); optimized AlZSM-11 structure with Al substituting Si at T1 site and charge-compensating Na⁺ cation located at O8 (b) and O9 (c) (grass: Si; red: O; pink: Al; purple, Na⁺).

Fig. S9.

(b)

(a)

(c)

(f)

Fig. S9. The optimized AlZSM-11 structure with Al substituting Si at T2, T3 and T4 site, respectively (grass: Si; red: O; pink: Al; purple, Na⁺).

Fig. S10.

(a)

(e)

(b)

(f)

(c)

Fig. S10. The optimized AlZSM-11 structure with Al substituting Si at T5, T6 and T7 site, respectively (grass: Si; red: O; pink: Al; purple, Na⁺).

Fig. S11.

Fig. S11. ²⁷Al MAS NMR spectra of calcined AlZSM-11 (a) and [B,Al]ZSM-11 with B/Al ratio of (b) 1.0; (c) 2.0 and (d) 8.0.

Fig. S12.

Fig. S12. Relationship between catalytic lifetimes of AlZSM-11 and [B,Al]ZSM-11 with different B/Al ratios and the area of the signal around 53.8 ppm in ²⁷Al MAS NMR spectra.

- (1) K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251–8260.
- (2) R. R. Zhao, Z. C. Zhao, S. K. Li and W. P. Zhang, J. Phys. Chem. Lett., 2017, 8, 2323–2327.
- (3) A.Vjunov, J. L. Fulton, T. Huthwelker, S. Pin, D. H. Mei, G. K. Schenter, N. Govind,
 D. M. Camaioni, J. Z. Hu and J. A. Lercher, J. Am. Chem. Soc., 2014, 136, 8296–8306.