Supplementary material

Insight into the Preferable Formation Mechanism of Long-Chain Hydrocarbons in Fischer-Tropsch Synthesis on Hcp Co(10-11) Surface from DFT and Microkinetic Modeling

Hongxia Liu^a Riguang Zhang^{a,*} Lixia Ling^a Qiang Wang^b Baojun Wang^{a,*} Debao Li^b

^a Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan

University of Technology, Taiyuan 030024, Shanxi, P.R. China

^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, Shanxi, PR China

1. The effect of translational entropy

In the studies by Cortright *et al.*,¹ as for the weakly bound species, CH₄ and CO₂, assuming that both behave as two dimensional gases and maintain the full rotational and vibrational modes of the corresponding gaseous species. The translational, rotational contributions are taken into account for gaseous species and transition states in the reaction. For a gas molecule moving in the three-dimensional (3D) space, the standard molar translational internal energy is

$$U_{\text{trans-3D}}^{\circ} = \frac{3}{2}RT$$

The standard molar translational entropy follows:

$$S^{o}_{trans-3D} = R \left[ln \left(\frac{\left(2\pi m k_B T \right)^{3/2}}{h^3} \right) + ln \left(\frac{V}{N_g} \right) + \frac{5}{2} \right]$$

where m is the mass of the molecule and V/Ng is the volume per molecule in the standard state. For a nonlinear molecule, the standard molar rotational internal energy contribution is

^{*} Corresponding author at: No. 79 Yingze West Street, Taiyuan 030024, China. Tel.: +86 351 6018239; Fax: +86 351 6041237 E-mail address: zhangriguang@tyut.edu.cn (Riguang Zhang); wangbaojun@tyut.edu.cn; quantumtyut@126.com (Baojun Wang)

$$U_{rot}^{\circ} = \frac{3}{2}RT$$

The standard molar rotational entropy contribution is

$$S_{\text{rot}}^{o} = R \left[\ln \left(\frac{8\pi^{2} \sqrt{8\pi^{3} I_{x} I_{y} I_{z}} (k_{B} T)^{3/2}}{\sigma h^{3}} \right) + \frac{3}{2} \right]$$

where I_x , I_y , and I_z are the three moments of inertia about the principal axes and is the rotational symmetry number.

If it is a linear gaseous molecule, the corresponding standard molar internal energy and entropy contribution are

$$U_{rot}^{o}(linear) = RT$$

$$S_{\text{rot}}^{\text{o}}\left(\text{linear}\right) = R \left[\ln\left(\frac{8\pi^{2}\left(k_{\text{B}}T\right)}{\sigma h^{3}}\right) + \frac{3}{2}\right]$$

where I is the moment of inertia of the linear molecule.

As for the tightly bound species including the remaining reactants, transition states, intermediates and products, the translational and rotational modes are replaced by vibrational modes corresponding to frustrated translation and rotation on the surface. Consequently, the internal energy change and entropy of the tightly adsorbed species are given by follows:

$$U_{vib}^{\circ} = RT \sum_{i} \frac{h v_i / k_B T}{e^{h v_i / k_B T} - 1}$$

$$S^{\theta} = R \sum_{i=1}^{n} \left[-ln(1 - e^{-hv_i/k_BT}) + \frac{hv_i/k_BT}{e^{hv_i/k_BT} - 1} \right]$$

For the weakly bound species, CH_4 , C_2H_6 and C_3H_8 , only the entropy of CH_4 in the gas phase at 500 K is obtained from *JANAF book*,² which is consistent with the results of NIST Chemistry WebBook.³ Meanwhile, the tightly bound species, CO, has been also obtained. As shown in Table S1, the *TS* and $T\Delta S$ values of CO and CH_4 species between that obtained by equation (5) and the experiment value obtained from *JANAF* book are compared; the results show that the experimental

values are in agreement with the calculated data, especially for the tightly bound CO species. As a result, we think the entropy change obtained by vibrational modes in our present study is reliable.

Table S1 The entropy change comparison between experimental value and formula data of CO and CH_4 species on Co(10-11) surface at 500 K.

		Adsorbed State	Gas State/kJ·mol-1		$T\Delta S_{ m Exp.}/{ m kJ\cdot mol^{-1}}$	<i>T</i> Δ <i>S</i> _{Cal.} /kJ·mol ⁻¹
		<i>TS</i> /kJ⋅mol-¹	$TS_{\mathrm{Exp.}}$	$TS_{\mathrm{Cal.}}$	120Exp./KJ IIIOI	123Cal./KJ IIIOI
	CO	21.8	106.4	103.0	84.6	81.2
	CH ₄	74.1	103.5	93.4	29.4	19.3

2. Adsorption of all possible species

The adsorption of all possible species involving in the C–C chain growth from CH_x to C_3H_8 over four adsorption sites of Co(10-11) surface have been examined, and the most stable adsorption configurations are presented in Figure 2, the corresponding adsorption free energies and the key structural parameters are listed in Table 1.

C, *H*, *O*, *CO* C and O atoms prefer to absorb at the 4-fold site; H atom prefers to adsorb at the Fcc site; CO adsorbs via C atom at the 4-fold site with the C–O bond perpendicular to the surface. The adsorption free energies of C, H, O and CO are 797.8, 253.4, 599.9 and 110.1 kJ·mol⁻¹, respectively.

CHO, *CH*₂*O*, *CH*₃*O* CHO and CH₂O are bound at the 4-fold site with the bridge(C)-bridge (O) configurations; CH₃O absorbs at the Fcc site via O atom. The adsorption free energies of CHO, CH₂O and CH₃O are 205.6, 131.7 and 255.3 kJ·mol⁻¹, respectively.

CHOH, CH₂OH, CH₃OH CHOH prefers to adsorb at the Bridge site via C atom with an adsorption free energy of 154.0 kJ·mol⁻¹; CH₂OH prefers to adsorb at the Bridge site via both C and O atoms, the C–O bond is almost parallel to the surface with an adsorption free energy of 123.6

kJ·mol⁻¹; CH₃OH prefers to adsorb at the top site via O atom with an adsorption free energy of 19.6 kJ·mol⁻¹.

CH, *CH*₂, *CH*₃, *CH*₄ CH adsorbs at the 4-fold site via C atom; CH₂ and CH₃ prefers to adsorb at the Fcc site, the corresponding adsorption free energies of CH, CH₂ and CH₃ are 615.4, 345.9 and 145.9 kJ·mol⁻¹, respectively; CH₄ is weakly bound to the surface with only an adsorption free energy of 9.5 kJ·mol⁻¹.

*C*₂*H*₂, *CH*₂*CH*, *CH*₃*CH*, *C*₂*H*₄, *CH*₃*CH*₂, *C*₂*H*₆ C₂H₂ prefers to adsorb at the 4-fold site via α-C atoms with the adsorption free energy of 209.0 kJ·mol⁻¹; CH₂CH prefers to the Fcc via α-C with the adsorption free energy of 242.7 kJ·mol⁻¹; CH₃CH adsorbs at the Fcc site via α-C atom with the adsorption free energy of 330.2 kJ·mol⁻¹; C₂H₄ adsorbs at the Top via α-C and the bridge site β-C with the adsorption free energy of 53.1 kJ·mol⁻¹; the adsorption configurations of CH₃CH₂ and C₂H₆ are similar to CH₃ and CH₄, respectively, the corresponding adsorption free energies are 131.6 and 1.8 kJ·mol⁻¹, respectively.

 C_2 , CCO, CHCO, CH_2CO , CH_3CO C_2 and CCO is stably adsorbed via the 4-fold site via β-C with the adsorption free energy of 684.1 and 484.3 kJ·mol⁻¹. CHCO is stably adsorbed via the Fcc(α-C) and Hcp(β-C) configuration with the adsorption free energy of 293.5 kJ·mol⁻¹. CH_2CO is stably adsorbed via the 4-fold configuration with the adsorption free energy of 117.1 kJ·mol⁻¹. CH_3CO is stably adsorbed via the 4-fold configuration an adsorption free energy of 199.0 kJ·mol⁻¹.

CHCHO, CH₂CHO, CH₃CHO, CH₃CH₂O The adsorption of CH_xCHO follow a similar trend with CH_xCO. CHCHO prefers to the bridge(β -C)-bridge(O) configuration with the adsorption free energy of 420.9 kJ·mol⁻¹. With the increasing of H atom, both CH₂CHO and CH₃CHO are adsorbed at the 4-fold site via the bridge(α -C) configurations, respectively, the corresponding adsorption free energies of CH₂CHO and CH₃CHO are 203.6 and 54.6 kJ·mol⁻¹, respectively. CH₃CH₂O prefers to

adsorbs at the Fcc site via O atoms with the adsorption free energy 259.1 kJ·mol⁻¹, in which the C–O bond is perpendicular to the Fcc site.

CHCHOH, CH₂CHOH, CH₃CHOH, C₂H₅OH CHCHOH prefers to the bridge site via α-C and β-C configuration with the adsorption free energy of 246.5 kJ·mol⁻¹; both CH₂CHOH and CH₃CHOH are adsorbed at the bridge sites via the top(α-C)-top(O) configurations, which have the corresponding adsorption free energies of 56.4 and 97.0 kJ·mol⁻¹, respectively. C₂H₅OH prefers to adsorbs at the top site via O atom with an adsorption free energies of 15.1 kJ·mol⁻¹.

CH₃CHCH, CH₃CH₂CH, CH₃CH₂CH₂, C₃H₈ CH₃CHCH prefers to Fcc site with the corresponding adsorption free energies of 235.2 kJ·mol⁻¹. The adsorption configurations of CH₃CH₂CH, CH₃CH₂CH₂ and C₃H₈ are similar to CH₃CH, CH₃CH₂ and C₂H₆, respectively, the corresponding adsorption free energies are 340.2, 129.9 and -0.5 kJ·mol⁻¹, respectively, we can see that C₃H₈ is weak adsorption.

*CH*₃*CHCHO*, *CH*₃*CH*₂*CHO*, *CH*₃*CH*₂*CH*₂*O* CH₃CHCHO prefers to 4-fold site with the corresponding adsorption free energies of 181.6 kJ·mol⁻¹. The adsorption configurations CH₃CH₂CHO and CH₃CH₂O are similar to that of CH₃CHO and CH₃CH₂O, respectively, the corresponding adsorption free energies are 64.6 and 251.1 kJ·mol⁻¹, respectively.

*CH*₃*CHCHOH*, *CH*₃*CH*₂*CHOH*, *C*₃*H*₇*OH* CH₃CHCHOH prefers to Bridge site with the corresponding adsorption free energies of 23.6 kJ·mol⁻¹. The adsorption configurations of CH₃CH₂CHOH and C₃H₇OH are similar to CH₃CHOH and CH₃CH₂OH, respectively, the corresponding adsorption free energies are 93.7 and 15.2 kJ·mol⁻¹, respectively.

3. CO Initial Activation and CH₃OH Formation

In **R1**, CO direct dissociation can form C+O via TS1, the C-O distance increases to 2.88 Å from 1.86 Å in TS1, the activation free energy is 153.7 kJ·mol⁻¹ with the reaction rate constant of 0.24×10^{-2} s⁻¹, and the reaction free energy is -28.8 kJ·mol⁻¹.

In **R2**, CO can hydrogenate to form CHO via TS2, the C–H distance decreases to 1.39 Å in TS2 from 2.85 Å in CO+H, the activation free energy is $112.8 \text{ kJ} \cdot \text{mol}^{-1}$ with the rate constant of $4.66 \times 10^1 \text{ s}^{-1}$, and the reaction free energy is $84.0 \text{ kJ} \cdot \text{mol}^{-1}$.

In **R3** CHO can dissociate into CH+O via TS3, the C–O distance increases to 1.79 Å in TS3, the activation free energy is 96.6 kJ·mol⁻¹ with the rate constant of $2.30 \times 10^3 \, s^{-1}$, and the reaction free energy is -58.4 kJ·mol⁻¹.

In addition, the effect of supercell size, thermal energy and entropy to the standard molar Gibbs free energies on the activation energy and reaction energy of the reactions related to CO activation on Co(10-11) surface is shown in Table S2.

Table S2 The activation energies and reaction energies of the reactions related to CO activation on Co(10-11) surface in our study and Liu's paper (J. Am. Chem. Soc., 2013, 135 16284–16287).

Reaction	CO→C+O	СО+Н→СНО	СНО→СН+О	СО+Н→СН+О		
Model and method	$(E_{ m a},\Delta E)/{ m eV}$					
p(2x2) Ours	(1.30, -0.90)	(1.19, 0.74)	(0.71, -0.59)	(1.45, 0.15)		
p(2x2) Liu's	(1.21, -0.83)	(1.29, 0.85)	(0.59,-0.72)	(1.44, 0.13)		
p(3x2) Our DFT	(1.46, -0.42)	(1.11, 0.69)	(0.92, -0.58)	(1.61, 0.11)		
p (3x2) Our DFT+G	(1.42, -0.30)	(1.17, 0.87)	(1.00, -0.61)	(1.87, 0.26)		

In **R4**, CHO hydrogenation can form CHOH via TS4, in TS4, the O–H distance decreases to 1.50 Å from 3.05 Å in CHO+H, this reaction has an activation free energy of 162.1 kJ·mol⁻¹, it is endothermic by 93.9 kJ·mol⁻¹.

In **R5**, CHO hydrogenation can form CH₂O via TS5, in TS5, the C–H distance is shortened to 1.58 Å from 2.49 Å in CHO+H, this elementary reaction has an activation free energy of 61.3 kJ·mol⁻¹, and it is endothermic by 27.2 kJ·mol⁻¹.

In **R6**, CH₂O can also hydrogenate to form CH₂OH via TS6, in TS6, the C–H distance is shortened to 1.35 Å from 2.73 Å in CH₂O+H, this elementary reaction has an activation free energy of 141.9 kJ·mol⁻¹, and it is endothermic by 92.3 kJ·mol⁻¹.

In **R7**, CH₂O directly dissociates into CH₂+O via TS7, the C–O distance increases to 2.07 Å in TS7 and 3.04 Å in CH₂+O, this elementary reaction has an activation free energy of 89.2 kJ·mol⁻¹ with the reaction free energy of -43.2 kJ·mol⁻¹.

In **R8**, CH₂O can be hydrogenated to CH₃O via TS8, in TS8, the C–H distance is shortened to 2.07 Å from 2.52 Å in CH₂O+H, this elementary reaction has the activation free energy and reaction free energy of 78.8 and -4.2 kJ·mol⁻¹, respectively.

In **R9**, for CH₃O direct dissociation, the C–O distance is elongated to 1.93 Å in TS9 and 3.54 Å in CH₃+O, this elementary reaction is exothermic by 59.3 kJ·mol⁻¹ with an activation free energy of 130.6 kJ·mol⁻¹.

In **R10**, CH₃O hydrogenation can form CH₃OH via TS10, in TS10, the O–H distance is shortened to 1.33 Å from 2.74 Å in CH₃O+H, this elementary reaction is endothermic by 77.4 with an activation free energy of 149.5 kJ·mol⁻¹.

4. CH₄ Formation

In **R11**, C hydrogenation can form CH via TS11, the C–H distance decreases to 1.48 Å in TS11 from 2.40 Å in C+H, the activation free energy is 77.5 kJ·mol⁻¹ with the rate constant of $2.05 \times 10^5 \, s^{-1}$, and the reaction free energy is $32.7 \, kJ \cdot mol^{-1}$.

In **R12**, CH hydrogenation into CH₂ via TS12 has an activation free energy of 116.8 kJ·mol⁻¹ with the rate constant of 1.78×10^{1} s⁻¹, it is endothermic by 69.1 kJ·mol⁻¹, in TS12, the C–H distance decreases to 1.11 Å from 2.07 Å in CH+H.

In **R13**, for CH₂ hydrogenation to CH₃ via TS13, the C–H distance is shortened from 2.62 Å to 1.70 Å in TS13, the activation free energy is 56.8 kJ·mol⁻¹ with the rate constant of $3.25 \times 10^7 \, s^{-1}$, and it is endothermic by $2.8 \, \text{kJ·mol}^{-1}$.

In **R14**, for CH₃ hydrogenation to CH₄ via TS14, the C–H distance decreases from 2.82 Å to 1.55 Å, it is exothermic by 49.5 kJ·mol⁻¹ with the activation free energy of 95.2 kJ·mol⁻¹ and the rate constant of 3.19×10^3 s⁻¹.

5. C₂ Hydrocarbons Formation

5.1 All reactions related to C species

In **R15**, C self-coupling to C_2 via TS15 has an activation free energy of 208.1 kJ·mol⁻¹ and the rate constant of 4.03×10^{-9} s⁻¹, it is endothermic by 178.2 kJ·mol⁻¹, in TS15, the C–C distance decreases to 1.35 Å from 2.75 Å in C+C.

In **R16**, C coupling with CO to form CCO via TS16 needs to overcome an activation free energy of 153.0 kJ·mol⁻¹ with the reaction free energy of 28.4 kJ·mol⁻¹, the reaction rate constant is 0.29×10^{-2} s⁻¹, in TS16, the C–C distance deceases to 1.88 Å from 2.88 Å in C+CO.

In **R17**, C coupling with CHO to form CCHO has been considered; however, our results show that this path does not exist.

5.2 All reactions related to CH species

In **R18**, CH self-coupling to C_2H_2 via TS18 needs to overcome an activation free energy of 106.9 kJ·mol⁻¹ with the reaction free energy of 44.1 kJ·mol⁻¹, the reaction rate constant is 1.09×10^2 s⁻¹

¹, in TS18, the C-C distance deceases to 1.79 Å from 2.73 Å in CH+CH.

In **R19**, CO insertion into CH to CHCO via TS19 is endothermic by 91.2 kJ·mol⁻¹ with an activation free energy of 143.6 kJ·mol⁻¹ and the rate constant of 0.03×10⁰ s⁻¹, in TS19, the C–C distance is shortened to 1.80 Å from 2.81 Å in CH+CO.

In **R20**, CHO insertion into CH to CHCHO via TS20 has an activation free energy and reaction free energy of 97.7 and 18.1 kJ·mol⁻¹, respectively; the reaction rate constant is 1.76×10^3 s⁻¹, in TS20, the C–C distance is shortened to 1.85 Å from 2.81 Å in CH+CHO.

5.3 All reactions related to CH₂ species

In **R21**, CH₂ coupling with CH to form CH₂CH via TS21 needs to overcome an activation free energy of 122.4 kJ·mol⁻¹ with the reaction free energy of 46.4 kJ·mol⁻¹, the reaction rate constant is 4.57×10^{0} s⁻¹, in TS21, the C–C distance deceases to 1.94 Å from 3.49 Å in CH₂+CH.

In **R22**, CH₂ self-coupling to C₂H₄ via TS22 needs to overcome an activation free energy of 51.0 kJ·mol⁻¹ with the reaction free energy of -32.8 kJ·mol⁻¹, the reaction rate constant is 1.34×10^8 s⁻¹, in TS22, the C–C distance deceases to 2.03 Å from 2.74 Å in CH₂+CH₂.

In **R23**, CO insertion into CH₂ to CH₂CO via TS23 is endothermic by 37.8 kJ·mol⁻¹ with an activation free energy of 106.4 kJ·mol⁻¹ and a reaction rate constant of 2.17×10² s⁻¹, in TS23, the C–C distance is shortened to 1.95 Å from 2.88 Å in CH₂+CO.

In **R24**, CHO insertion into CH₂ to CH₂CHO via TS24 has an activation free energy and reaction free energy of 61.4 and -22.2 kJ·mol⁻¹, respectively, and the reaction rate constant is 1.10×10^7 s⁻¹, in TS24, the C–C distance is shortened to 1.98 Å from 2.66 Å in CH₂+CHO.

5.4 All reactions related to CH₃ species

In **R25**, CH₃ coupling with CH to form CH₃CH via TS25 needs to overcome an activation free energy of 124.5 kJ·mol⁻¹ with the reaction free energy of 66.0 kJ·mol⁻¹, the reaction rate constant is

 2.77×10^{0} s⁻¹, in TS22, the C-C distance deceases to 1.51 Å from 3.52 Å in CH₃+CH.

In **R26**, CH₃ coupling with CH₂ to CH₃CH₂ via TS26 has an activation free energy of 83.4 kJ·mol⁻¹ with the reaction free energy of -9.8 kJ·mol⁻¹, the reaction rate constant is 2.52×10⁴ s⁻¹, in TS26, the C–C distance deceases to 2.09 Å from 2.92 Å in CH₃+CH₂.

In **R27**, CH₃ self-coupling to form C_2H_6 via TS27 needs to overcome an activation free energy of 241.3 kJ·mol⁻¹ with the reaction free energy of -13.9 kJ·mol⁻¹, the reaction rate constant is 1.73×10^{-12} s⁻¹, in TS27, the C–C distance deceases to 2.85 Å from 3.85 Å in CH₃+CH₃.

In **R28**, CO insertion into CH₃ to CH₃CO via TS28 is endothermic by 42.8 kJ·mol⁻¹ with an activation free energy of 147.7 kJ·mol⁻¹ and the reaction rate constant of 0.01×10^{0} s⁻¹, in TS28, the C–C distance is shortened to 1.96 Å from 3.13 Å in CH₃+CO.

In **R29**, CHO insertion into CH₃ to CH₃CHO via TS29 has an activation free energy and reaction free energy of 100.9 and -1.1 kJ·mol⁻¹, respectively. The reaction rate constant is 8.12×10^2 s⁻¹. In TS29, the C–C distance is shortened to 1.99 Å from 2.85 Å in CH₃+CHO.

5.5 All reactions related to C₂H₂ and C₂H₄ species

Starting with C₂H₂ species, in **R31**, CH₂CH can be formed by hydrogenation with an activation free barrier of 68.0 kJ·mol⁻¹ and the reaction free energy of 19.6 kJ·mol⁻¹. Then, CH₂CH is further hydrogenated, and the possible products are C₂H₄ and CH₃CH in **R32** and **R33**, respectively, the corresponding activation free barriers are 84.5 and 68.1 kJ·mol⁻¹ with the reaction free energies of -33.9 and -27.4 kJ·mol⁻¹, respectively, indicating that CH₃CH is easy to be formed. Finally, C₂H₆ is formed by CH₃CH successive hydrogenations at the α-C site.

Starting with C₂H₄ species, in **R34**, C₂H₄ hydrogenation to CH₃CH₂ is endothermic by 11.7 kJ·mol⁻¹, which has an activation free barrier of 48.9 kJ·mol⁻¹. In **R35**, CH₃CH hydrogenation to CH₃CH₂ has an activation free barrier of 59.7 kJ·mol⁻¹, and it is endothermic by 18.2 kJ·mol⁻¹. In

R36, CH₃CH₂ hydrogenation to C₂H₆ has an activation free barrier of 86.3 kJ·mol⁻¹, and it is exothermic by 16.1 kJ·mol⁻¹.

5.6 All reactions related to $CH_xCHO(x=1\sim3)$ species

CHCHO related reactions Starting from CHCHO, in R30, the C-O bond cleavage of CHCHO can form C_2H_2 via TS30, this reaction has the activation free energy and reaction free energy of 121.5 and -24.3 kJ·mol⁻¹, respectively; the reaction rate constant is 5.75×10^0 s⁻¹. CHCHO hydrogenation can form CHCHOH, CH₂CHO and CHCH₂O, respectively; however, our results show that CHCH₂O intermediate cannot exist.

In **R37**, CHCHO hydrogenation to CHCHOH via TS37 has an activation free energy of 109.1 kJ·mol⁻¹ with the reaction rate constant of 1.12×10^2 s⁻¹, the reaction free energy is 0.7 kJ·mol⁻¹.

In R38 CHCHO hydrogenation to CH₂CHO via TS38 has the activation free energy and reaction free energy of 50.0 and 28.8 kJ·mol⁻¹, respectively, the reaction rate constant is 1.69×10^8 s⁻¹.

Therefore, CHCHO hydrogenation to CH₂CHO is kinetically favorable than CHCHOH formation and its direct dissociation into CHCH+O.

CH₂CHO related reactions Once CH₂CHO is formed. In R39 the C–O bond cleavage of CH₂CHO can form CH₂CH via TS39, this reaction has the activation free energy and reaction free energy of 109.5 and -30.9 kJ·mol⁻¹, respectively, the reaction rate constant is 1.01×10² s⁻¹. CH₂CHO hydrogenation can form CH₂CHOH, CH₃CHO and CH₂CH₂O, respectively; however, our results show that CH₂CH₂O intermediate cannot exists.

In **R40**, CH₂CHO hydrogenation to CH₂CHOH via TS40 has an activation free energy of 127.1 kJ·mol⁻¹ with the reaction rate constant of $1.47 \times 10^0 \, s^{-1}$ and the reaction free energy of 82.8 kJ·mol⁻¹.

In **R41**, CH₂CHO hydrogenation to CH₃CHO via TS41 has a lower activation free energy of 33.1 kJ·mol⁻¹ with reaction rate constant of 9.81×10⁹ s⁻¹ and the reaction free energy of 8.4 kJ·mol⁻¹.

Thus, CH₃CHO formation is more favorable than either CH₂CHOH formation or its direct dissociation into CH₂CH and O. Thus, CH₃CHO dissociation and hydrogenation will be examined.

CH₃CHO related reactions Starting from CH₃CHO, in R42 the C–O bond cleavage of CH₃CHO can form CH₃CH via TS42 has the activation free energy and reaction free energy of 53.9 and -55.8 kJ·mol⁻¹, respectively, the reaction rate constant is $6.64 \times 10^7 \, s^{-1}$.

In **R43**, CH₃CHO hydrogenation to CH₃CHOH via TS43 has an activation free energy of 150.7 kJ·mol⁻¹ with reaction rate constant of 0.50×10⁻² s⁻¹ and reaction free energy of 107.0 kJ·mol⁻¹.

In **R44**, CH₃CHO hydrogenation to CH₃CH₂O via TS44 has an activation free energy of 83.4 kJ·mol⁻¹ with the reaction rate constant of 5.44×10⁴ s⁻¹ and the reaction free energy of 3.4 kJ·mol⁻¹. Again, the formations of CH₃CH and CH₃CH₂O are more favorable than CH₃CHOH formation. Meanwhile, as mentioned above, CH₃CH successive hydrogenation to form C₂H₆ is considered.

5.7 All reactions related to CH₃CH₂O species

CH₃CH₂O related reactions

In **R45**, the C–O bond cleavage of CH_3CH_2O can form CH_3CH_2 via TS45, this reaction has the activation free energy and reaction free energy of 113.5 and 1.1 kJ·mol⁻¹, respectively, the reaction rate constant is $3.94 \times 10^1 \ s^{-1}$.

In **R46**, CH₃CH₂O hydrogenation to C₂H₅OH via TS46 has an activation free energy of 146.5 kJ·mol⁻¹ with the reaction rate constant of 0.14×10^{-1} s⁻¹ and the reaction free energy of 74.4 kJ·mol⁻¹.

It is worth mentioning that the reverse activation free energy of CH₃CHO hydrogenation to CH₃CH₂O is 80.0 kJ·mol⁻¹, which is much lower than the activation free energies of **R45** and **R46**, indicating that CH₃CH₂O prefers to be dissociated into CH₃CHO.

6. C₃ Hydrocarbons Formation

6.1 All reactions related to CH₃CH species

In R35, CH₃CH hydrogenation to CH₃CH₂ via TS35 has been mentioned above.

In **R47**, CH₃CH couples with CH via TS47, in TS47, the C–C distance decreases to 2.01 Å from 3.46 Å, it is endothermic by 56.1 kJ·mol⁻¹ with the activation free energy of 160.9 kJ·mol⁻¹, the reaction rate constant is 0.04×10^{-2} s⁻¹.

In **R48**, CHO insertion into CH₃CH via TS48 has an activation free energy of $60.3 \text{ kJ} \cdot \text{mol}^{-1}$ and the reaction rate constant of $1.42 \times 10^7 \text{ s}^{-1}$, and it is exothermic by $35.8 \text{ kJ} \cdot \text{mol}^{-1}$, in TS48, the C–C distance decreases from 2.81 Å to 2.02 Å.

6.2 All reactions related to CH₃CH₂ species

In **R36** CH₃CH₂ hydrogenation to C₂H₆ via TS36 has been mentioned above.

In **R49**, CH₃CH₂ coupling with CH via TS49 is endothermic by 26.1 kJ·mol⁻¹ with the activation free energy of 145.8 kJ·mol⁻¹, the reaction rate constant is 0.4×10^{0} s⁻¹, in TS49, the C–C distance decreases to 2.32 Å from 3.20 Å,

In **R50**, CHO insertion into CH₃CH₂ via TS50 has an activation free energy of 102.7 kJ·mol⁻¹ and a reaction rate constant of 5.30×10^2 s⁻¹, and it is exothermic by 18.7 kJ·mol⁻¹, in TS50, the C–C distance decreases from 2.06 Å to 3.29 Å.

In **R51**, CH₃CH₂ coupling with CH₂ via TS51 is exothermic by 33.2 kJ·mol⁻¹ with the activation free energy of 54.6 kJ·mol⁻¹, the reaction rate constant is $5.47 \times 10^7 \ s^{-1}$, in TS51, the C–C distance decreases to 2.21 Å from 2.83 Å.

6.3 All reactions related to CH₃CH_xCHO species

CH₃CHCHO related reactions Starting form CH₃CHCHO, in R52, its dissociation into

CH₃CHCH has an activation free energy of 125.6 kJ·mol⁻¹, and it is exothermic by 46.5 kJ·mol⁻¹, the reaction rate constant is 2.10×10^{0} s⁻¹.

For CH₃CHCHO hydrogenation to CH₃CHCHOH, in **R53**, the activation free energy is 138.6 kJ·mol⁻¹, the reaction rate constant is 0.56×10^0 s⁻¹, it is endothermic by 106.0 kJ·mol⁻¹. For its hydrogenation to CH₃CH₂CHO, in **R54**, this reaction has an activation free energy of 31.7 kJ·mol⁻¹ with the reaction rate constant of 6.65×10^{10} s⁻¹, and it is endothermic by 8.2 kJ·mol⁻¹. Thus, CH₃CH₂CHO formation by CH₃CHCHO hydrogenation is kinetically favorable than CH₃CHCHOH formation and direct dissociation into CH₃CHCH and O.

CH₃CH₂CHO related reactions Once CH₃CH₂CHO is formed, in R55, its dissociation into CH₃CH₂CH has an activation energy of 64.6 kJ·mol⁻¹, and it is exothermic by 57.5 kJ·mol⁻¹, the rate constant is $5.04 \times 10^7 \ s^{-1}$.

For CH₃CH₂CHO hydrogenation to CH₃CH₂CHOH, in **R56**, the activation free energy is 144.6 kJ·mol⁻¹, the reaction rate constant is 6.99×10⁰ s⁻¹, it is endothermic by 109.8 kJ·mol⁻¹. For its hydrogenation to CH₃CH₂CH₂O, in **R57**, this reaction has an activation free energy of 128.6 kJ·mol⁻¹ with the reaction rate constant of 6.28×10⁰ s⁻¹, and it is exothermic by 4.9 kJ·mol⁻¹. Thus, CH₃CH₂CHO dissociation into CH₃CH₂CH is more favorable than its hydrogenation to CH₃CH₂CHOH and CH₃CH₂CH₂O.

6.4 All reactions related to CH₃CH₂CH₂O species

Starting form CH₃CH₂CH₂O, in **R58**, its C–O bond cleavage to form CH₃CH₂CH₂ has an activation free energy of 120.5 kJ·mol⁻¹ with the reaction rate constant of 3.29×10^{0} s⁻¹, and it is exothermic by 17.6 kJ·mol⁻¹. In **R59**, its hydrogenation to C₃H₇OH (propanol) has an activation free energy of 159.6 kJ·mol⁻¹ with the reaction rate constant of 0.50×10^{-3} s⁻¹, and it is endothermic by 89.2 kJ·mol⁻¹. The similar activation free energies of above two reactions indicate that the

formations of CH₃CH₂CH₂ and CH₃CH₂CH₂OH (propanol) are competitive kinetically.

It is worth mentioning that the reverse activation free energy of CH₃CH₂CHO hydrogenation to CH₃CH₂CH₂O is 133.5 kJ·mol⁻¹, which is much lower than the activation free energies of **R59**, indicating that CH₃CH₂CH₂O prefers to be dissociated into CH₃CH₂CHO species. In **R60**, CH₃CH₂CH hydrogenation to CH₃CH₂CH₂ has an activation free barrier of 74.7 kJ·mol⁻¹, and it is endothermic by 15.2 kJ·mol⁻¹. In **R61**, CH₃CH₂CH₂ hydrogenation to C₃H₈ has an activation free barrier of 47.3 kJ·mol⁻¹, and it is endothermic by 14.8 kJ·mol⁻¹.

7. Microkinetic modeling

In this study, microkinetic modeling is implemented to probe into the catalytic activity and selectivity of major products in syngas conversion on Co(10-11) surface under the typical experimental conditions (P_{CO} =5 atm, P_{H_2} =10 atm, and T=500 K).

The adsorption reactions of CO and H_2 are assumed to be in equilibrium, the equilibrium constants were defined as follow:^{4,5}

$$K = \exp\left[-\left(\Delta E_{ads} - T\Delta S\right)/k_B T\right]$$

Where E_{ads} refers to the adsorption energy of CO or H_2 , k_B is the Boltzmann constant, T is the reaction temperature and ΔS is the entropy change from the gas phase at the reaction temperature, obtained from NIST Chemistry WebBook.³

The rate constants have been presented in Table 2 in the main text. The site balance of intermediate species included in the reaction mechanism can be written in terms of coverage (θ_X : X=surface species).^{4,5}

$$\theta_{CO} + \theta_{C} + \theta_{H} + \theta_{CH_{0}} + \theta_{CH_{2}O} + \theta_{CH_{3}O} + \theta_{CH} + \theta_{CH_{2}} + \theta_{CH_{3}} + \theta_{CHCHO} + \theta_{CH_{2}CHO} + \theta_{CH_{3}CH_{0}} + \theta_{CH_{3}CH_{2}O} + \theta_{C_{2}H_{4}} + \theta_{CH_{3}CH_{2}O} +$$

The coverage of CO and H are $\theta_{CO} = P_{CO}K_1\theta_*$ and $\theta_H = P_{H_2}^{1/2}K_2^{1/2}\theta_*$. C, CHO, CH₂O, CH₃O,

CH₂, CH₂, CH₃, CHCHO, CH₂CHO, CH₃CHO, CH₃CH₂O, C₂H₂, CH₂CH, C₂H₄, CH₃CH, CH₃CH₂CH₂CH₃CH₂CH₂O, CH₃CH₂CH and CH₃CH₂CH₂ are described according to the pseudo steady-state approximation,⁶ in which the production rate and consumption rate are equal for all intermediates:

$$C: \frac{d\theta_C}{dt} = k_1 \theta_{CO} \theta_* - k_{11} \theta_C \theta_H = 0 \tag{1}$$

$$\theta_C = \frac{k_1 \theta_{CO} \theta_*}{k_{11} \theta_H}$$

CHO:
$$\frac{d\theta_{CHO}}{dt} = k_2 \theta_{CO} \theta_H - k_3 \theta_{CHO} \theta_* - k_5 \theta_{CHO} \theta_H - k_{20} \theta_{CHO} \theta_{CHO} - k_{48} \theta_{CH_3CH} \theta_{CHO} = 0$$
 (2)

$$\theta_{CHO} = \frac{k_2 \theta_{CO} \theta_H}{k_3 \theta_* + k_5 \theta_H + k_{20} \theta_{CH} + k_{48} \theta_{CH, CH}}$$

$$CH_2O: \frac{d\theta_{CH_2O}}{dt} = k_5\theta_{CHO}\theta_H - k_8\theta_{CH_2O}\theta_H = 0$$
(3)

$$\theta_{CH_2O} = \frac{k_5 \theta_{CHO}}{k_{\circ}}$$

CH₃O:
$$\frac{d\theta_{CH_3O}}{dt} = k_8 \theta_{CH_2O} \theta_H - k_{10} \theta_{CH_3O} \theta_H = 0$$
 (4)

$$\theta_{CH_3O} = \frac{k_8 \theta_{CH_2O}}{k_{10}}$$

CH:
$$\frac{d\theta_{CH}}{dt} = k_3 \theta_{CHO} \theta_* + k_{11} \theta_C \theta_H - k_{12} \theta_{CH} \theta_H - k_{18} \theta_{CH}^2 - k_{20} \theta_{CH} \theta_{CHO} = 0$$
 (5)

$$\theta_{CH} = \frac{-(\not k_{20}\theta_{CHO} + k_{12}\theta_H + \sqrt{(k_{20}\theta_{CHO} + k_{12}\theta_H)^2 + 4k_{18}k_3\theta_{CHO}\theta_*}}{2k_{18}}$$

CH₂:
$$\frac{d\theta_{CH_2}}{dt} = k_{12}\theta_{CH}\theta_H - k_{13}\theta_{CH_2}\theta_H - k_{22}\theta_{CH_2}^2 - k_{51}\theta_{CH_3CH_2}\theta_{CH_2} = 0$$
 (6)

$$\theta_{CH_{2}} = \frac{-(k_{13}\theta_{H} + k_{51}\theta_{CH_{3}CH_{2}} + \sqrt{(k_{13}\theta_{H} + k_{51}\theta_{CH_{3}CH_{2}})^{2} + 4k_{22}k_{12}\theta_{CH}\theta_{H}}}{2k_{22}}$$

CH₃:
$$\frac{d\theta_{CH_3}}{dt} = k_{13}\theta_{CH_2}\theta_H - k_{14}\theta_{CH_3}\theta_H = 0$$
 (7)

$$\theta_{CH_3} = \frac{k_{13}\theta_{CH_2}}{k_{14}}$$

CHCHO:
$$\frac{d\theta_{CHCHO}}{dt} = k_{20}\theta_{CH}\theta_{CHO} - k_{38}\theta_{CHCHO}\theta_{H} = 0$$
 (8)

$$\theta_{CHCHO} = \frac{k_{20}\theta_{CH}\theta_{CHO}}{k_{38}\theta_{H}}$$

CH₂CHO:
$$\frac{d\theta_{CH_2CHO}}{dt} = k_{38}\theta_{CHCHO}\theta_H - k_{41}\theta_{CH_2CHO}\theta_H = 0$$
 (9)

$$\theta_{CH_2CHO} = \frac{k_{41}\theta_{CHCHO}}{k_{38}}$$

CH₃CHO:
$$\frac{d\theta_{CH_3CHO}}{dt} = k_{41}\theta_{CH_2CHO}\theta_H - k_{42}\theta_{CH_3CHO}\theta_* - k_{44}\theta_{CH_3CHO}\theta_H = 0$$
 (10)

$$\theta_{CH_3CHO} = \frac{k_{41}\theta_{CH_2CHO}P_{H_2}^{1/2}K_2^{1/2}}{k_{42} + k_{44}P_{H_2}^{1/2}K_2^{1/2}}$$

CH₃CH₂O:
$$\frac{d\theta_{CH_3CH_2O}}{dt} = k_{44}\theta_{CH_3CHO}\theta_H - k_{46}\theta_{CH_3CH_2O}\theta_H = 0$$
 (11)

$$\theta_{CH_3CH_2O} = \frac{k_{44}\theta_{CH_3CHO}}{k_{46}}$$

$$C_{2}H_{2}: \frac{d\theta_{C_{2}H_{2}}}{dt} = k_{18}\theta_{CH}^{2} - k_{31}\theta_{C_{2}H_{2}}\theta_{H} = 0$$
(12)

$$\theta_{C_2H_2} = \frac{k_{18}\theta_{CH}^2}{k_{31}\theta_H}$$

CH₂CH:
$$\frac{d\theta_{CH_2CH}}{dt} = k_{31}\theta_{C_2H_2}\theta_H - k_{32}\theta_{CH_2CH}\theta_H = 0$$
 (13)

$$\theta_{CH_2CH} = \frac{k_{31}\theta_{C_2H_2}}{k_{32}}$$

CH₃CH:
$$\frac{d\theta_{CH_3CH}}{dt} = k_{32}\theta_{CH_2CH}\theta_H + k_{42}\theta_{CH_3CHO}\theta_* - k_{35}\theta_{CH_3CH}\theta_H - k_{48}\theta_{CH_3CH}\theta_{CHO} = 0$$
 (14)

$$\theta_{CH_3CH} = \frac{k_{32}\theta_{CH_2CH}\theta_H + k_{42}\theta_{CH_3CHO}\theta_*}{k_{35}\theta_H + k_{48}\theta_{CHO}}$$

$$C_{2}H_{4}: \frac{d\theta_{C_{2}H_{4}}}{dt} = k_{22}\theta_{CH_{2}}^{2} - k_{34}\theta_{C_{2}H_{4}}\theta_{H} = 0$$
(15)

$$\theta_{C_2H_4} = \frac{k_{22}\theta_{CH_2}^2}{k_{34}\theta_H}$$

$$CH_{3}CH_{2}: \frac{d\theta_{CH_{3}CH_{2}}}{dt} = k_{34}\theta_{C_{2}H_{4}}\theta_{H} + k_{35}\theta_{CH_{3}CH}\theta_{H} - k_{36}\theta_{CH_{3}CH_{2}}\theta_{H} - k_{51}\theta_{CH_{3}CH_{2}}\theta_{CH_{2}} = 0$$
(16)

$$\theta_{CH_3CH_2} = \frac{k_{34}\theta_{C_2H_4}\theta_H + k_{35}\theta_{CH_3CH}\theta_H}{k_{36}\theta_H + k_{51}\theta_{CH_2}}$$

CH₃CHCHO:
$$\frac{d\theta_{CH_3CHCHO}}{dt} = k_{48}\theta_{CH_3CH}\theta_{CHO} - k_{54}\theta_{CH_3CHCHO}\theta_H = 0$$
 (17)

$$\theta_{CH_3CHCHO} = \frac{k_{48}\theta_{CH_3CH}\theta_{CHO}}{k_{54}\theta_H}$$

CH₃CH₂CHO:
$$\frac{d\theta_{CH_3CH_2CHO}}{dt} = k_{54}\theta_{CH_3CHCHO}\theta_H - k_{55}\theta_{CH_3CH_2CHO}\theta_H - k_{57}\theta_{CH_3CH_2CH_2O}\theta_* = 0$$
(18)

$$\theta_{CH_3CH_2CHO} = \frac{k_{54}\theta_{CH_3CHCHO}P_{H_2}^{1/2}K_2^{1/2}}{k_{57} + k_{55}P_{H_2}^{1/2}K_2^{1/2}}$$

CH₃CH₂CH₂O:
$$\frac{d\theta_{CH_3CH_2CH_2O}}{dt} = k_{57}\theta_{CH_3CH_2CHO}\theta_H - k_{59}\theta_{CH_3CH_2CH_2O}\theta_H = 0$$
(19)

$$\theta_{CH_3CH_2CH_2O} = \frac{k_{57}\theta_{CH_3CH_2CHO}}{k_{59}}$$

CH₃CH₂CH:
$$\frac{d\theta_{CH_3CH_2CH}}{dt} = k_{55}\theta_{CH_3CH_2CHO}\theta_* - k_{60}\theta_{CH_3CH_2CH}\theta_H = 0$$
 (20)

$$\theta_{CH_3CH_2CH} = \frac{k_{55}\theta_{CH_3CH_2CHO}}{k_{60}P_{H_2}^{1/2}K_2^{1/2}}$$

$$CH_{3}CH_{2}CH_{2}: \frac{d\theta_{CH_{3}CH_{2}CH_{2}}}{dt} = k_{51}\theta_{CH_{3}CH_{2}}\theta_{CH_{2}} + k_{60}\theta_{CH_{3}CH_{2}CH}\theta_{H} - k_{61}\theta_{CH_{3}CH_{2}CH_{2}}\theta_{H} = 0$$
(21)

$$\theta_{CH_{3}CH_{2}CH_{2}} = \frac{k_{51}\theta_{CH_{3}CH_{2}}\theta_{CH_{2}} + k_{60}\theta_{CH_{3}CH_{2}CH}\theta_{H}}{k_{61}\theta_{H}}$$

By putting all of the coverage expressions (equations (1)—(21)) into equation [1], we can calculate the coverage of surface free sites θ_* . Subsequently, the coverage of all intermediates can be obtained. In fact, in our calculation process of the coverage of all intermediates, R48 reaction is not included in equation (2). If R48 reaction is considered, equation [1] is an unknown equation. The results are very hard to gain.

The rates for each major product (CH₃OH, CH₄, C₂H₅OH, C₂H₆, C₃H₇OH, and C₃H₈) are $r_{CH_3OH} = k_{10}\theta_{CH_3O}\theta_H \; ; r_{CH_4} = k_{14}\theta_{CH_3}\theta_H \; ; r_{C_2H_3OH} = k_{46}\theta_{CH_3CH_2O}\theta_H \; ; \qquad \qquad r_{C_2H_6} = k_{36}\theta_{CH_3CH_2}\theta_H \; ; \\ r_{C_3H_7OH} = k_{59}\theta_{CH_3CH_2CH_2O}\theta_H \; ; r_{C_3H_8} = k_{61}\theta_{CH_3CH_2CH_2}\theta_H$

Here, the relative selectivity is defined by the relative rate for each product, where i is the $r_i / (r_{\text{CH}_3\text{OH}} + r_{\text{CH}_4} + r_{\text{C}_3\text{H}_5\text{OH}} + r_{\text{C}_3\text{H}_7\text{OH}} + r_{\text{C}_3\text{H}_8})$ species of the products.

References

- [1] R. D. Cortright, J. A. Dumesic, Adv Catal., 2001, 46, 161–264.
- [2] http://kinetics.nist.gov/janaf/
- [3] http://webbook.nist.gov/chemistry/.
- [4] Q. L. Tang, Q. J. Hong, Z. P. Liu, J. Catal., 2009, 263, 114–122.
- [5] Y. M. Choi, P. Liu, J. Am. Chem. Soc., 2009, 131, 13054–13061.
- [6] P. Liu, A. Logadottir, J. K. Nørskov, Acta., 2003, 48, 3731–3742.