The existing states of potassium species in K-doped Co_3O_4 catalysts and

their influences on the activities for NO and soot oxidation

Zhou Shang, Min Sun, Xiang Che, Wei Wang, Li Wang,^{*} Xiaoming Cao, Wangcheng Zhan, Yanglong Guo, Yun Guo,^{*} Guanzhong Lu

Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and

Technology, Meilong Road 130, Shanghai, 200237, P. R. China

Fig.S1 FT-IR spectra of $K_{0.1}$ Co and $K_{0.1}$ Co-w catalysts.

[•] **Corresponding author.** Tel/Fax: 0086-21-64253703, E-mail: <u>yunguo@ecust.edu.cn</u> [Yun Guo]; <u>wangli@ecust.edu.cn</u> [Li Wang]

Fig.S2 Soot combustion in 8 % O_2/Ar.

Fig.S3 Ozawa plots at a soot conversion of 50 % on Co_3O_4 , $K_{0.1}Co$ and $K_{0.1}Co$ -w. The feed gas was 8 % O_2/Ar .

Fig.S4 Ozawa plots at a soot conversion of 50 % on Co_3O_4 , $K_{0.1}Co$ and $K_{0.1}Co$ -w. The feed gas was 500 ppm NO + 8 % O_2/Ar .

Fig.S5 Arrhenius plots for NO oxidation on Co_3O_4 and $K_{0.1}Co$ -w. The feed gas was 500 ppm NO + 8 % O_2/Ar .

Fig.S6 Activity curves for soot oxidation in 8 % O_2/Ar over $Co_3O_4,\,K_{0.1}Co\text{-w}$ and 0.7 wt%

 K_2CO_3/Co_3O_4 catalysts.

Fig.S7 XRD patterns of $K_{0.1}\mbox{Ce}$ and $K_{0.1}\mbox{Ce-w}.$

Fig.S8 XRD patterns of $K_{0.1}\mbox{Cu}$ and $K_{0.1}\mbox{Cu-w}.$

Fig.S9 XRD patterns of $K_{0.1}\mbox{Fe}$ and $K_{0.1}\mbox{Fe-w}.$

Fig.S10 $T_{\rm 50}$ for soot oxidation under loose contact over $K_{0.1}Co\text{-w}$ in 3 times of TPO recycles.

Fig.S11 Activity curves of 3 times recycle evaluations for NO oxidation on $K_{0.1}$ Co-w in 500 ppm NO

+ 8 % O₂/Ar.