## Supporting Information

## Selective Glycerol Oxidation over Ordered Mesoporous Copper Aluminum Oxide Catalysts

Stefan Schünemann, Ferdi Schüth, Harun Tüysüz\*

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr



Figure S1: Temperature profiles of the reaction medium during catalytic glycerol oxidation.



**Figure S2**: (a) Nitrogen physisorption isotherms (offset by  $150 \text{ cm}^3\text{g}^{-1}$  for clarity) and (b) pore size distributions of Cu-Al<sub>2</sub>O<sub>3</sub> catalysts.

| Sample       | $\frac{A_{BET}}{M^2 g^{-1}}$ | Vp <sup><i>a</i></sup><br>/ cm <sup>3</sup> g <sup>-1</sup> | $\mathbf{d}_{p}{}^{a}$ / nm | m <sub>Cu</sub> <sup>b</sup><br>/ % |
|--------------|------------------------------|-------------------------------------------------------------|-----------------------------|-------------------------------------|
| 0-Cu         | 195                          | 0.33                                                        | 4.4                         | 0                                   |
| 1-Cu         | 180                          | 0.26                                                        | 3.8                         | 1.2                                 |
| 5-Cu         | 145                          | 0.22                                                        | 3.8                         | 5.2                                 |
| 5-Cu-sf      | 30                           | 0.06                                                        |                             | 6.9                                 |
| 5-Cu-Comm    | 80                           | 0.52                                                        |                             | 6.8                                 |
| 10-Cu        | 105                          | 0.18                                                        |                             | 11.8                                |
| <b>20-Cu</b> | 45                           | 0.21                                                        |                             | 20.6                                |

**Table S1**: BET surface areas, pore volumes, and pore diameters from nitrogen physisorption. Cu concentration in mass % determined via EDX.

<sup>*a*</sup> BET-surface area ( $A_{BET}$ ), pore volume ( $V_p$ ), and pore diameter ( $d_p$ ) determined from nitrogen physisorption.

<sup>b</sup> Concentration of Cu in mass % of the samples determined by EDX.



Figure S3: Cu 2p XPS spectrum of 5-Cu.



**Figure S4**: (a) Glycerol conversions and carbon balances of 5-Cu at different temperatures. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 10 bar oxygen, 3 h, 750 rpm. (b) Glycerol conversions and carbon balances of 5-Cu at different oxygen pressures. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 3 h, 750 rpm. (c) Glycerol conversions and carbon balances of 5-Cu at different oxygen pressures. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 3 h, 750 rpm. (c) Glycerol conversions and carbon balances of 5-Cu at different oxygen pressures. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 10 bar oxygen, 90 °C, 3 h, 750 rpm. (d) Glycerol conversion and carbon mass balance of 5-Cu at different stirring speeds. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 10 bar oxygen, 90 °C, 3 h.



**Figure S5**: Recycling experiments with 5-Cu. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 10 bar oxygen, 750 rpm. The catalyst was recovered by centrifugation and washed with water between the catalytic reactions.



**Figure S6**: Glycerol conversion of 5-Cu (black) and glycerol conversion after removing the solid catalyst after a reaction time of one hour and subsequently preceding the reaction for further two hours (red). Reaction Conditions: Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 10 bar oxygen, 750 rpm.



**Figure S7**: Transmission XRD patterns of 5-Cu after catalytic reaction in water (afer a single 3h experiment and after 3x3h) and different water/co-solvent mixtures (50 vol%) as indicated in the figure. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 10 bar oxygen, 750 rpm stirring speed.



**Figure S8:** Glycerol conversion profiles in water / 1-propanol (a), ethanol (b), and *tert*.-butanol (c) mixtures with different volume ratios. Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 10 bar oxygen, 750 rpm stirring speed.



**Figure S9:** Glycerol conversion of 5-Cu (solid line). After 2 h 3 mmol NaOH were added to the reaction mixture and the reaction was continued for another hour (dashed line). Reaction conditions: 30 mg catalyst, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 10 bar oxygen, 750 rpm stirring speed.

| EtOH         | x   | Time     | Selectivity / % |        |           |        |                | Carbon |
|--------------|-----|----------|-----------------|--------|-----------|--------|----------------|--------|
| / Vol% / % / | / h | glycolic | glyceric        | formic | tartronic | oxalic | balance<br>/ % |        |
| 0            | 36  | 2        | 38              | 21     | 18        | 1      | 0              | 92     |
| 5            | 42  | 3        | 34              | 23     | 15        | 2      | 4              | 91     |
| 20           | 38  | 1.5      | 35              | 20     | 27        | 2      | 4              | 92     |
| 35           | 33  | 1        | 38              | 16     | 21        | 0      | 0              | 93     |
| 50           | 36  | 0.67     | 33              | 7      | 23        | 0      | 0              | 88     |

**Table S2:** Selectivities and carbon mass balances of the selective glycerol oxidation in water/ethanol mixtures at a conversion of approximately 36 %.



**Figure S10**: Selectivity, conversion, and carbon mass balance over time in different water/cosolvent mixtures as indicated in the figures. Reaction conditions: 30 mg 5-Cu, 15 mL aq. 0.05 M glycerol solution, 4:1 NaOH:glycerol, 90 °C, 10 bar oxygen, 750 rpm stirring speed.

## Calculation of Conversion, Selectivity, Carbon Mass Balance, and Initial Reaction Rate

Conversions were calculated according to Equation 1.

$$X_{gly}(t) = \frac{C_{gly}^0 \cdot V_i - C_{gly}(t) \cdot V(t)}{C_{gly}^0 \cdot V_i} \cdot 100$$
 Eq. 1

The selectivities to the products were calculated based on the number of carbon atoms according to Equation 2:

$$S_i(t) = \frac{n_i \cdot C_i(t) \cdot V_i}{3 \cdot (C_{gly}^0 \cdot V_i - C_{gly}(t) \cdot V(t))} \cdot 100$$
 Eq. 2

The carbon mass balance is calculated according to Equation 3:

$$CB(t) = \frac{3 \cdot C_{gly}(t) \cdot V_i + \sum [n_i \cdot C_i(t) \cdot V(t)]}{3 \cdot C_{gly}^0 \cdot V_i} \cdot 100$$
 Eq. 3

The initial reaction rate was calculated according to Equation 4 from the glycerol conversion after 1 h. Until this time the rate of glycerol conversion was constant in each case:

$$r_0 = \frac{C_{gly}^0 \cdot V_i - C_{gly}(t) \cdot V(t)}{m_{cat} \cdot t \cdot V_i}$$
 Eq. 4

with:

 $C_{gly}^0$  – initial molar concentration of glycerol in mol/L

 $V_i$  - initial reaction volume

 $C_{gly}(t)$  – molar concentration of glycerol at time t

- V(t) reaction volume at time t
- $n_i$  number of carbon atoms in oxidation product i
- $C_i(t)$  molar concentration of oxidation product *i* at time

 $r_0$  – initial reaction rate

- t reaction time
- V reaction volume