Supporting Information

NiSe₂/FeSe₂ nanodendrite: A highly efficient electrocatalyst for oxygen evolution reaction

Yeshuang Du,^a Gongzhen Cheng^a and Wei Luo^{a,b*}

^aCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei

430072, P. R. China, Tel.: +86-027-68752366

*Corresponding author. E-mail addresses: wluo@whu.edu.cn

^bKey laboratory of Advanced Energy Materials Chemistry (Ministry of Education),

Nankai University, Tianjin 300071, P. R. China

Experimental section

Chemicals and Materials. Oleylamine (OAm) and octadecene (ODE) are purchased from aladin. Nickel aceylacetonate and iron aceylacetonate was bought from changcheng chemicals, selenium powder is purchased from Tianjin kermel chemical. Potassium hydroxide, hexane, isopropyl alcohol and ethanol are purchased from Sinopharm Chemical Reagent Ltd. All chemical reagents are used in the experiments directly without further treatment.

Synthesis of Ni_xFe_{1-x}Se₂

A mixture of 0.1 mmol of Ni(acac)₂, 0.1mmol of Fe(acac)₂ and 0.4 mmol selenium powder was dissolved in the mixed solution of 8 ml of OAm and 2 ml of ODE. The temperature of solution was raised to 120 °C in a nitrogen flow to dissolve metal precursors. Moisture and oxygen was removed through evacuation at 120 °C with an oil pump for 20 min. Then the system was refilled with nitrogen and the mixture solution was heated to 280 °C. After keeping at 280 °C for 60 min, the solution was cooled to room temperature in air. The synthesized Ni_{0.5}Fe_{0.5}Se₂ catalyst was collected by centrifugation and washed with hexane and ethanol for three times. The obtained black powder was dried under vacuum and stored in nitrogen atmosphere for further use.

Other Ni_xFe_{1-x}Se₂ (x=0.25, 0.75) catalysts were prepared in the similar method except that the metal precursors ratio were varied. For example, Ni_{0.25}Fe_{0.75}Se₂ was synthesized with 0.05 mmol of Ni(acac)₂, 0.15 mmol of Fe(acac)₂ and 0.4 mmol selenium, Ni_{0.75}Fe_{0.25}Se₂ was produced using 0.15 mmol of Ni(acac)₂, 0.05 mmol of Fe(acac)₂ and 0.4 mmol selenium as precursors. The preparing process of NiSe₂ and FeSe₂ was the same as Ni_xFe_{1-x}Se₂ in the absence of Fe(acac)₂ or Ni(acac)₂.

Characteristic

X-ray power diffraction patterns were measured on a Bruker D8 Advance X-ray diffractometer with Cu K α radiation ($\lambda = 0.154178$ nm). Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) characterizations were done on a Tecnai G20 U-Twin electron microscope equipped with EDX detector at an acceleration voltage of 200 kV. Fe doped NiSe₂ catalysts was dissolved in hexane through sonication. The sample of TEM was prepared by casting a drop of Fe doped NiSe₂ solution on a carbon coated Cu grid. X-ray photoelectron spectroscopy (XPS) measurement was performed with a Thermo Fischer ESCALAB 250Xi spectrophotometer. Inductively coupled plasma-atomic emission spectroscopy (ICP-

AES) was conducted on IRIS Intrepid II XSP.

Ink preparation

10 mg of $Ni_xFe_{1-x}Se_2$ was mixed with the equal mass of XC-72 in 20 mL of hexane and stirred for 12 h in a nitrogen flow. The $Ni_xFe_{1-x}Se_2/XC$ -72 was collected by centrifugation and washed by hexane. It was dried under vacuum at room temperature and stored in inert atmosphere for next use. For preparing catalyst ink, 5 mg of catalyst was dissolved in 1 mL Nafion/ isopropyl alcohol (0.1% Nafion) with sonication for 1 h to ensure that catalyst was dispread in solution uniformly.

Electrochemical measurement

The test for OER was performed on an electrochemical station (CHI 760E) with a rotating disc electrode (RDE) in a three electrode configuration. 18 μ L of catalyst ink was deposed on the surface (surface area = 0.196 cm²) of a glass carbon electrode (GC) and dried on air to vapor the solvent. The mass catalyst loading of all catalysts is ~0.45 mg/cm². The GC electrode covered with Ni_xFe_{1-x}Se₂/XC-72 served as working electrode and a platinum foil and a mercuric oxide electrode (MOE) immersed in 1 M KOH were used as the counter electrode (CE) and reference electrode (RE), respectively. OER measurements were conducted in 1 M KOH solution at room temperature. The potential of Hg/HgO/OH- electrode versus a reversible hydrogen electrode (RHE) was measured in saturated hydrogen atmosphere with 20 wt % Pt/C as electrocatalyst to calibrate the potential of the system. In 1 M KOH, the equation E

(RHE) = E (MOE) + 0.92 is considered. Cyclic voltammetry (CV) measurements were measured at a scan rate of 5 mV/s from 1.23 to 1.7 V vs RHE with the rotating rate of 1600 rpm after activating catalysts through a quick scan rete of 500 mV/s until reaching a stable state. We calculate the electrochemically active surface area (ECSA) by measuring double-layer capacitance in nitrogen saturated 1 M KOH solution through CVs at a scan rate of 10, 20, 30, 40, 50 mV/s. Generally specific capacitance of C_s =0.04 mF/cm² is used to divide double-layer capacitance.¹⁸⁻²⁰

Figure S1 Electrochemical double layer capacitance curves on $Ni_{0.75}Fe_{0.25}Se_2$ (a), $Ni_{0.5}Fe_{0.5}Se_2$ (b), $Ni_{0.25}Fe_{0.75}Se_2$ (c) with different scan rates from 50 mV s⁻¹ to 10 mV s⁻¹ in 1 M KOH. Cdl Plots of $Ni_{0.75}Fe_{0.25}Se_2$ (d), $Ni_{0.5}Fe_{0.5}Se_2$ (e), $Ni_{0.25}Fe_{0.75}Se_2$ (f).

Figure S2 Specific activities normalized by ECSA of these three samples.

Figure S3. Polarization curves of $Ni_{0.5}Fe_{0.5}Se_2$ and physical mixture of $NiSe_2$ and FeSe₂.

Figure S4. XRD patterns of $Ni_{0.5}Fe_{0.5}Se_2$ before (a) and after (b) stability test.

Figure S5. TEM images of $Ni_{0.5}Fe_{0.5}Se_2/XC$ -72 before (a) and after (b) stability test

Figure S6. XPS spectra of Ni 2p (a), Fe 2p (b), Se 3d (c) and O 1s (d) in

 $Ni_{0.5}Fe_{0.5}Se_2$ after stability test.

Table S1 Composition of N	Ni _x Fe _{1-x} Se ₂ catalysts
---------------------------	---

Catalysts	1	2	3
Precursor ratio	Ni _{0.75} Fe _{0.25} Se ₂	$Ni_{0.5}Fe_{0.5}Se_2$	$Ni_{0.25}Fe_{0.75}Se_2$
ICP result	$Ni_{0.82}Fe_{0.22}Se_2$	$Ni_{0.53}Fe_{0.47}Se_2$	$Ni_{0.27}Fe_{0.77}Se_2$

Table S2 Comparison of OER performance for $Ni_{0.5}Fe_{0.5}Se_2$ with other non-noble metal electrocatalysts towards OER in alkaline media

Catalyst	Mass	Electrolyte	Tafel slop	η@10mA/cm ²	Ref.
	loading		(mV/dec)	mV	
	(mg/cm ²)				
Ni ₃ Se ₂	0.217	0.3 M KOH	97.2	290	1
NiSe		1 М КОН	54	320	2
NiSe ₂	1	1 М КОН	38	250	3
Co ₇ Se ₈		1 M KOH	32.6	290	4
CoSe	0.28	1 М КОН	40	295	5
CoSe ₂	0.142	0.1 M KOH	44	320	6
CeO ₂ /CoSe ₂	0.2	0.1 M KOH	44	288	7
(Ni,Co) _{0.85} Se	6	1 М КОН	77	216	8
@NiCo LDH					
CoMnP	0.284	1 M KOH	61	330	9
NiCo ₂ O ₄		1 M NaOH	53	290	10
FeSe ₂	0.01	1 М КОН	48.1	330	11
Co ₉ S ₈	0.24	1 М КОН	50.7	294	12
Co ₂ B-NG	0.21	0.1 M KOH	45	360	13
FeCoO	0.36	0.1 M KOH	36.8	308	14

NiSe/NiO	4.25	1 М КОН	128	243	15
Fe _{2-x} Mn _x P	0.284	1 M KOH	39	440	16
CoP ₂	0.285	1 М КОН	96	300	17
Ni _{0.5} Fe _{0.5} Se ₂	0.45	1 М КОН	34.7	235	this
					work

References

- [1] A. T. Swesi, J. Masud and M. Nath, *Energy Environ. Sci.*, 2016, 9, 1771.
- [2] K. Xu, H. Ding, K. Jia, X. Lu, P. Chen, T. Zhou, H. Cheng, S. Liu, C. Wu and Y. Xie, *Angew. Chem. Int. Ed.*, 2016, 55, 1710.
- [3] I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha and J.
 Park, ACS Appl. Mater. Interfaces, 2016, 8, 5327.
- [4] J. Masud, A. T. Swesi, W. P. R. Liyanage and M. Nath, ACS Appl. Mater. Interfaces, 2016, 8, 17292.
- [5] M. Liao, G. Zeng, T. Luo, Z. Jin, Y. Wang, X. Kou and D. Xiao, *Electrochimica Acta*, 2016, **194**, 59.
- [6] Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S.Wei, B. Ye and Y. Xie, *J. Am. Chem. Soc.*, 2014, **136**, 15670.
- [7] Y.-R. Zheng, M.-R. Gao, Q. Gao, H.-H. Li, J. Xu, Z.-Y. Wu and S.-H. Yu, *Small*, 2015, 11, 182.
- [8] C. Xia, Q. Jiang, C. Zhao, M. N. Hedhili and H. N. Alshareef, *Adv. Mater.*, 2016, 28, 77.

[9] D. Li, H. Baydoun, C. N. Verani and S. L. Brock, J. Am. Chem. Soc. 2016, 138, 4006.

[10] X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, Angew. Chem. Int. Ed., 2016, 55, 6290.

[11] R. Gao, H. Zhang and D. Yan, *Nano Energy*, 2017, **31**, 90.

[12] M. Al-Mamun, Y. Wang, P. Liu, Y. Zhong, H. Yin, X. Su, H. Zhang, H. Yang, D.Wang, Z. Tang and H. Zhao, *J. Mater. Chem. A*, 2016, *4*, 18314.

[13] J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler and W. Schuhmann, *Adv. Energy Mater.*, 2016, 6, 1502313.

[14] L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao and Z. Zhu, *Adv. Mater.*, 2017, 29, 1606793.

[15] R. Gao, G. Li, J. Hu, Y. Wu, X. Lian, D. Wang and X. Zou, *Catal. Sci. Technol.*, 2016, 6, 8268.

[16] D. Li, H. Baydoun, B. Kulikowski and S. L. Brock, *Chem. Mater.*, 2017, 29, 3048.

[17] J. Wang, W. Yang and J. Liu, J. Mater. Chem. A, 2016, 4, 4686.

[18] C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, 135, 16977.

[19] Y. Lu, H. Xu, J. Wang and X. Kong, *Electrochim. Acta*, 2009, **54**, 3972.

[20] M. Turner, G. E. Thompson and P. A. Brook, Corros. Sci., 1973, 13, 985.