Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

High-Throughput Evaluation of In Situ-generated Cobalt (III) Catalysts for Acyl Fluoride

Synthesis

Graham M. Lee, Roxanne Clément, and R. Tom Baker*

Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and

Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada

*Corresponding author. E-mail address: rbaker@uottawa.ca (R. T. Baker)

Table of Contents

I. Supplementary High-Throughput Experiment Data	
II. NMR/IR Spectra of Isolated Compounds	S7
III. Crude ¹⁹ F NMR Spectra of Acyl Fluorides	S14

I. Supplementary High-Throughput Experiment Data

Figure S1. Conversion of 1a during high-throughput experiment.

N=1 N=2 (% conversion) (% Yield) (% conversion) (% Yield) 71.9 $CpCo(CF_3)(I)(PPh_2Me)$ 72.7 66.4 62.1 (no ligand) $CpCo(CF_3)(I)(CO) + PPh_2Me$ 84.2 74.5 83.9 72.7 $CpCo(CF_3)(I)(CO) + PPh_3$ 63.2 50.1 65.8 57.3 Control (no catalyst or ligand) 33.2 24.4 38.9 22.1

Table S1. Results of test screen for validation of high-throughput experiment procedure.

Figure S2. GC-FID calibration curve for 1a and HMB.

Figure S3. GC-FID calibration curve for 2a and HMB.

Signal 1: FID1 A,

Peak #	RT [min]	Name	Area	Area %	Amount
1	2.160		20.516	15.358	0.00000
2	2.483	Benzoyl fluoride	29.667	22.208	0.00000
3	2.761	-	19.730	14.770	0.00000
4	3.181	Benzoyl chloride	32.971	24.681	0.00228
5	3.481		30.704	22.984	0.00000
6	0.000	Hexamethylbenzene BF	0.000	0.000	0.00000
7	4.704	Hexamethylbenzene_BC	111.573	83.520	0.00315

Figure S4. Example of GC-FID chromatogram for high-throughput experiment.

II. NMR/IR Spectra of Isolated Compounds

Figure S5. ¹H NMR spectrum of CpCo(I)₂(PPh₂Me).

Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum of CpCo(I)₂(PPh₂Me).

Figure S7. ¹H NMR spectrum of CpCo(I)(CO)(CF₂CF₂CF₂CF₃) (**M3**).

Figure S8. ¹⁹F NMR spectrum of $CpCo(I)(CO)(CF_2CF_2CF_3)$ (M3).

Figure S9. ¹³C{¹H} NMR spectrum of CpCo(I)(CO)(CF₂CF₂CF₂CF₃) (**M3**).

Fig S10. IR spectrum of $CpCo(I)(CO)(CF_2CF_2CF_2CF_3)$ (M3).

Figure S11. ¹H NMR spectrum of $Cp*Co(I)(CO)(CF_2CF_2CF_3)$ (M5).

Figure S12. ¹⁹F NMR spectrum of $Cp*Co(I)(CO)(CF_2CF_2CF_2CF_3)$ (M5).

Figure S13. ${}^{13}C{}^{1}H$ NMR spectrum of Cp*Co(I)(CO)(CF₂CF₂CF₂CF₃) (M5).

Fig S14. IR spectrum of $Cp*Co(I)(CO)(CF_2CF_2CF_2CF_3)$ (M5).

Figure S15. ¹H NMR spectrum of 4-nitrobenzoyl fluoride (**2b**).

Figure S16. ¹⁹F NMR spectrum of 4-nitrobenzoyl fluoride (2b).

Figure S17. ¹H NMR spectrum of 3,4,5-tris(methoxy)benzoyl fluoride (2k).

Figure S18. ¹⁹F NMR spectrum of 3,4,5-tris(methoxy)benzoyl fluoride (2k).

III. Crude ¹⁹F NMR Spectra of Acyl Fluorides

Figure S19. Crude ¹⁹F NMR spectrum of 2a.

Figure S20. Crude ¹⁹F NMR spectrum of 2b.

Figure S21. Crude ¹⁹F NMR spectrum of 2c.

Figure S22. Crude ¹⁹F NMR spectrum of 2d.

Figure S23. Crude ¹⁹F NMR spectrum of 2e.

Figure S24. Crude ¹⁹F NMR spectrum of 2f.

Figure S25. Crude ¹⁹F NMR spectrum of 2g.

Figure S29. Crude ¹⁹F NMR spectrum of 2h.

Figure S30. Crude ¹⁹F NMR spectrum of 2i.

Figure S26. Crude ¹⁹F NMR spectrum of 2j.

Figure S31. Crude ¹⁹F NMR spectrum of 2k.

Figure S27. Crude ¹⁹F NMR spectrum of 21.

Figure S28. Crude ¹⁹F NMR spectrum of 2m.

Figure S32. Crude ¹⁹F NMR spectrum of **2n**.