On the Selection of the Best Polymorph of Al_2O_3 Carrier for the Supported Cobalt Nano-spinel Catalyst for N₂O Abatement: an Interplay between Preferable Surface Spreading and Damaging Active Phase – Support Interaction

G. Grzybek^{a*}, K. Ciura^a, S. Wójcik^a, J. Gryboś^a, P. Indyka^a, M. Inger^a, K. Antoniak-Jurak^b, P.

Kowalik^b, A. Kotarba^a, Z. Sojka^a

^aFaculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland

^bNew Chemical Synthesis Institute, al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy

*Corresponding author: Fax No. +48 12 6340515, e-mail: g.grzybek@uj.edu.pl

Supplementary data

On the Selection of the Best Polymorph of Al_2O_3 Carrier for the Supported Cobalt Nanospinel Catalyst for N₂O Abatement: an Interplay between Preferable Surface Spreading and Damaging Strong Active Phase – Support Interaction

Fig. S1. The XDR patterns of the $Co_3O_4|Al_2O_3$ supported catalysts obtained using a series of alumina supports.

On the Selection of the Best Polymorph of Al_2O_3 Carrier for the Supported Cobalt Nanospinel Catalyst for N₂O Abatement: an Interplay between Preferable Surface Spreading and Damaging Strong Active Phase – Support Interaction

Fig. S2. Raman spectra of the $Co_3O_4|Al_2O_3$ supported catalysts registered with an excitation wavelength of 785 nm.

On the Selection of the Best Polymorph of Al_2O_3 Carrier for the Supported Cobalt Nanospinel Catalyst for N₂O Abatement: an Interplay between Preferable Surface Spreading and Damaging Strong Active Phase – Support Interaction

Fig. S3. Plot of the CoAl₂O₄ content determined from the deconvoluted Raman peaks areas (Fig. 3) versus N₂O conversion at 500°C (the bars colors for the indicated catalysts is the same as in the main text figures). The three points for each catalysts represent independent μ Raman measurements taken at three different regions of inspection (probed spots) of the catalyst pellets. The dotted line illustrate a general apparent trend of the increase in N₂O conversion with lowering of the undesired CoAl₂O₄ phase content. Large variation of the mixed spinel content in the investigated samples prohibits any sensible quantification of the observed effect.

On the Selection of the Best Polymorph of Al_2O_3 Carrier for the Supported Cobalt Nanospinel Catalyst for N₂O Abatement: an Interplay between Preferable Surface Spreading and Damaging Strong Active Phase – Support Interaction

Fig. S4. The TPR curves for the Co₃O₄|Al₂O₃ supported catalysts based on P3 support.

On the Selection of the Best Polymorph of Al_2O_3 Carrier for the Supported Cobalt Nanospinel Catalyst for N₂O Abatement: an Interplay between Preferable Surface Spreading and Damaging Strong Active Phase – Support Interaction

Fig. S5. The TPR curves for the $Co_3O_4|Al_2O_3$ supported catalysts based on P2 support.

On the Selection of the Best Polymorph of Al_2O_3 Carrier for the Supported Cobalt Nanospinel Catalyst for N₂O Abatement: an Interplay between Preferable Surface Spreading and Damaging Strong Active Phase – Support Interaction

Fig. S6. The TPR curves for the $Co_3O_4|Al_2O_3$ supported catalysts based on P1 support.