Supplementary Information

Actualizing efficient photocatalytic water oxidation over SrTaO₂N by Na modification

Fangfang Wu^a, Gang Liu^b and Xiaoxiang Xu^{a,*}

^aShanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China Email: <u>xxxu@tongji.edu.cn</u>, telephone: +86-21-65986919

^bShenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016, China

Figure S1. XRD patterns of amorphous precursors ammonolyzed at 900 °C for different time. Impurity peaks of $Sr_5Ta_4O_{15}$ were progressively depressed along with reaction time.

Figure S2. Observed and calculated X-ray powder diffraction patterns of SrTaO₂N with space group *I4mcm* ($R_p = 6.05\%$, $R_{wp} = 4.49\%$, $\chi^2 = 1.656$)

Figure S3. Thermogravimetric analysis (TGA) of $SrTaO_2N$ and $SrNa_{0.2}Ta_{0.8}O_{2.8}N_{0.2}$ in air with a heating rate 20 K/min

Figure S4. XRD patterns of precursors for $SrNa_{0.2}Ta_{0.8}O_{2.8}N_{0.2}$ before ammonolysis

	Sr / at%	Na / at%	Ta / at%	O/at%	N / at%
SrTaO ₂ N	20.8	-	19.2	41.2	18.8
SrNa _{0.2} Ta _{0.8} O _{2.8} N _{0.}	21.2	3.6	15.2	55.2	4.8
2					

Table S1 Compositions of samples determined by ICP and TGA analysis