Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Bimetallic Gold(I) Complexes of Photoswitchable Phosphines: Synthesis and Uses in Cooperative Catalysis

Tanzeel Arif,^{a,b} Clément Cazorla,^{a,b} Nicolas Bogliotti,^b Nidal Saleh,^a Florent Blanchard,^a Vincent Gandon,^{a,c} Rémi Métivier,^b Juan Xie,^b Arnaud Voituriez,^{*a} Angela Marinetti^{*a}

^a Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France.

^b PPSM, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, 94235 France.

^c Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Univ. Paris-Sud, Université Paris-Saclay, bâtiment 420, 91405 Orsay cedex, France.

Table of Contents:

Part I:	General information	SI-2
Part II:	Experimental Procedures	SI-3
Part III:	NMR Spectra (¹ H, ¹³ C, ¹⁹ F and ³¹ P NMR)	SI-8
Part IV:	Photochromic Behaviour of complexes 3 and 6	SI-27
Part V:	Hydroamination of N-alkenyl ureas	SI-31
Part VI:	[4+2] cycloadditions of 1,6-enyne substrate	SI-39
Part VII:	X-Ray crystal structure determinations	SI-40

I. General information

All reactions were run under an inert atmosphere (argon), by using standard techniques for manipulating air-sensitive compounds. Anhydrous solvents were obtained by filtration through drying columns (THF, Et₂O, CH₂Cl₂). All reagents and solvents were of commercial quality and were used without further purification. Analytical thin-layer chromatography (TLC) was performed on plates precoated with silica gel. The developed chromatograms were visualized by UV absorbance and by immersion in phosphomolybdic acid or KMnO₄ solutions, followed by heating. Flash column chromatography was performed using 40-63 mesh silica gel. Purifications have been performed on a automated flash chromatography system (SiO₂), unless otherwise stated. NMR spectra (¹H, ¹³C, ³¹P) were recorded on either AV 500 or AV 300 spectrometers. NMR spectra were recorded at room temperature. Chemical shifts are reported in parts per million relative to an internal standard of residual chloroform ($\delta = 7.27$ ppm for ¹H NMR and 77.00 ppm for ¹³C NMR). *J* couplings are reported in Hz. The ¹³C NMR spectra were assigned by standard methods using HSQC or DEPT experiments.

Substrates 4^1 and 7^2 have been synthesized according to the reported procedures.

¹ Kojima, M.; Mikami, K. Synlett 2012, 57.

² Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178.

II. Experimental Procedures A. Synthesis of complexes *E*-3 and *Z*-3:

II.1. 2,6-difluoro-3-iodoaniline (SI-A).

To a solution of 2,6-difluoroacetanilide³ (210 mg, 1.23 mmol) in *conc*. H_2SO_4 (12.3 mL) was added *N*-iodosuccinimide (277 mg, 1.23 mmol) portion-wise at room temperature. The resulting mixture was stirred over night at room temperature then poured into crushed ice (200 g). The aqueous layer was extracted with EtOAc (3x30 mL), washed with H_2O (100 mL), washed with *sat. aq.* NaHCO₃ (100 mL), dried

(MgSO₄), filtered, evaporated to give the title compound (351 mg, 96%) as white solid. Mp 62–64°C; R_f 0.42 (40% EtOAc/hexane); ¹H NMR (300 MHz, CDCl₃) 7.60 (1H, dt, J_1 9, J_2 6, CH_{Ar}), 7.28 (1H, br. s. N*H*), 6.78 (1H, td, J_1 9, J_2 1, CH_{Ar}), 2.20 (3H, s, CH_3); ¹³C NMR (75 MHz, CDCl₃) 160.0 (*C*=O), 158.6 (*C*q), 158.4 (*C*q), 143.8 (*C*q), 136.4 (*C*H_{Ar}), 113.4 (d, *J* 21, *C*H_{Ar}), 77.2 (*C*I), 23.0 (*C*H₃); ¹⁹F NMR (282 MHz) -96.1 (s), -116.6 (s); HRMS (ESI) calcd. for C₈H₇F₂INO [M+H]⁺: 297.9540, found: 297.9515.

To a solution of *N*-(2,6-difluoro-3-iodophenyl)acetamide (351 mg, 1.18 mmol) in MeOH (1.5 mL) was added *conc*. HCl (1 mL). The reaction mixture was stirred at 60 °C for 12 h then allowed to reach room temperature, diluted with H₂O (50 mL), neutralized with solid NaHCO₃, extracted with EtOAc (3x50 mL), dried, evaporated and purified by chromatography to give the compound **SI-A** (290 mg, 96%) as white solid.

 R_f 0.50 (20% EtOAc/hexane); ¹H NMR (300 MHz, CDCl₃) 7.03 (1H, ddd, J_1 9, J_2 7, J_3 6, CH_{Ar}), 6.65 (1H, ddd, J_1 10, J_2 9, J_3 2, CH_{Ar}), 3.83 (2H, br.s. N H_2); ¹³C NMR (75 MHz, CDCl₃) 153.1 (dd, J_1 7, J_2 93, CqF), 150.0 (dd, J_1 6, J_2 90, CqF), 132.3 (Cq), 125.1 (d, J 8, CHAr), 112.5 (d, J 19, CHAr), 74.6 (d, J 20, CqI); ¹⁹F NMR (282 MHz) -111.6 (s), -132.1 (s); HRMS (ESI) calcd. for C₆H₃F₂IN [M+H]⁺: 255.9435, found: 255.9435.

³ Finger, G. S.; Reed, F. H.; Finnerty, J. L. J Am. Chem. Soc. **1951**, 73, 153-155.

II.2. (E)-1,2-bis(2,6-difluoro-3-iodophenyl)diazene (1).

To a solution of aniline **SI-A** (1.61 g, 6.3 mmol) in toluene (120 mL) was added MnO_2 (13.75 g, 158 mmol). The reaction mixture was stirred at 70°C for 48 h then allowed to reach room temperature, filtered through a pad of silica, evaporated and purified by chromatography to give the title compound (1.21 g, 76%, >95/5 : *E/Z*) as orange red solid; R_f 0.46 (20% EtOAc/hexane). Mp 124–126°C; ¹H NMR (300 MHz, CDCl₃) 7.85-7.78 (2H, m, CH_{Ar}), 7.00-6.90 (2H,

F

 PPh_2

m, CH_{Ar}); Z isomer: 7.62 (2H, m, CH_{Ar}), 6.73 (2H, m, CH_{Ar}); ¹³C NMR (75 MHz, CDCl₃) 156.0 (d, J 264, CqF), 154.0 (dd, J₁ 4, J₂ 262, CqF), 140.1 (d, J 7, CHAr), 131.7 (t, J 12, CqN), 114.4 (d, J 20, CHAr), 76.6 (dd, J₁ 5, J₂ 25, CqI); ¹⁹F NMR (282 MHz) 140.3 (dd, J₁ 10, J₂ 3), 114.5 (dd, J₁ 4, J₂ 21); HRMS (ESI) calcd. for C₁₂H₅F₄I₂N₂ [M+H]⁺: 506.8478, found: 506.8491.

II.3. (E)-1,2-bis(3-(diphenylphosphino)-2,6-difluorophenyl)diazene.

A stirred solution of diazene **1** (30 mg, 0.06 mmol) in Et₂O (3 mL) was cooled to -130°C (pentane/liquid N₂) and *n*-BuLi (74 μ L, 0.119 mmol, 1.6 M in Hexanes) was added rapidly. To the resulting dark red reaction mixture was added after 5 min, a solution of distilled Ph₂PCl (24 μ L, 0.132 mmol) in Et₂O (1 mL). After 10 min the cooling bath was removed and the reaction mixture

(1 mL). After 10 min the cooling bath was removed and the reaction mixture PPh_2 was stirred at room temperature for 3 h; quenched with H₂O (3 drops), dried (MgSO₄), evaporated and purified by chromatography to give the desired product (31 mg, 80%, 95/5 : *E/Z*) as orange solid. Mp 168–170°C; *R_f* 0.20 (5% EtOAc/pentane); ¹H NMR (300 MHz, CDCl₃) 7.45-7.31 (20H, m, *CH*_{Ar}), 6.99 (2H, t, *J* 9, *CH*_{Ar}), 6.92-6.83 (2H, m, *CH*_{Ar}); [Discernable data for *Z* isomer: 7.19-7.14 (2H, m, *CH*_{Ar}), 7.10-7.04 (2H, m, *CH*_{Ar})]; ¹³C NMR (75 MHz, CDCl₃): 157.0 (ddd, *J*₁ 5, *J*₂ 16, *J*₃ 261, *C*qF), 155.7 (dd, *J*₁ 4, *J*₂ 264, *C*qF), 136.0-135.7 (m, *CH*_{Ar}), 134.7 (d, *J* 11, *C*qP), 133.8 (d, *J* 21, *CH*_{Ar}), 131.8-131.4 (m, *C*qP), 129.3 (s, *CH*_{Ar}), 128.8 (d, *J* 7, *CH*_{Ar}), 122.8-122.2 (m, N-*C*_q), 113.0-112.5 (m, *CH*_{Ar}); ³¹P NMR (121.5 MHz): -18.9 (d, *J* 59); ¹⁹F NMR (282 MHz): -110.5 (d, *J* 59), -120.0 (s); [Discernable data for *Z* isomer: -110.8 (d, *J* 58), -120.3 (s).]; HRMS (ESI) calcd. for C₃₆H₂₅F₄N₂P₂ [M+H]⁺: 623.1429, found: 623.1444.

II.4. (*E*)-1,2-bis(3-(diphenylphosphino)-2,6- difluorophenyl)diazene (2). A stirred solution of diazene 1 (30 mg, 0.06 mmol) in Et₂O (3 mL) was cooled to -130° C (pentane/liquid N₂) and *n*-BuLi (74 µL, 0.119 mmol, 1.6 M in Hexanes) was added rapidly. To the resulting dark red reaction mixture was added after 5 min, a solution of distilled Ph₂PCl (24 µL, 0.132 mmol) in Et₂O (1 mL). After 10 min the cooling bath was removed and the reaction mixture was stirred at room temperature for 3 h; then re-cooled to 0 °C and BH₃.Me₂S (75 µL, 0.15 mmol, 2M in THF) was added and stirred

at room temperature for 3 h. The excess borane was quenched with H₂O (3 drops), dried (MgSO₄), evaporated and purified by chromatography to give the desired complex (33 mg, 85%) as orange solid. R_f 0.26 (20% EtOAc/hexane); ¹H NMR (300 MHz, CDCl₃) 7.88-7.78 (2H, m, CH_{Ar}), 7.70-7.64 (6H, m, CH_{Ar}), 7.57-7.30 (14H, m, CH_{Ar}), 7.17 (2H, t, *J* 9, CH_{Ar}), 2.10-0.30 (6H, br. s. BH₃); ¹³C NMR (75 MHz, CDCl₃) 157.7 (dd, J_1 5, J_2 267, CqF), 157.1 (dd, *J* 267, CqF), 138.1-137.7 (m, CqP), 136.9-136.6 (m, CqP), 132.8 (d, *J* 10, CH_{Ar}), 132.5-132.1 (m, CH_{Ar}), 131.7 (d, *J* 2, CH_{Ar}), 129.0 (d, *J* 11, CH_{Ar}), 127.7-126.4 (m, CqN), 113.6 (m, CH_{Ar}); ³¹P NMR (121.5 MHz) 18.9 (m); ¹⁹F NMR (282 MHz) -103.9 (dd, J_1 7, J_2 4), -114.2 (d, *J* 7); HRMS (ESI) calcd. for C₃₆H₃₀B₂F₄N₂NaP₂ [M+Na]⁺: 673.1904, found: 673.1915.

$II.5. \ (E) \ -1, 2 \ -bis (3 \ -(diphenylphosphino) \ -2, 6 \ -difluorophenyl) diazene \ (E-3).$

To a stirred solution of phosphine-borane **2** (30 mg, 0.046 mmol) in THF (5 mL) was added EtOH (10 mL). The resulting solution was degassed and refluxed for 3 h under argon in dark. The reaction was monitored by ³¹P NMR. After complete deprotection, the solvents and (EtO)₃B were removed under high vacuum at 40°C. The crude diphosphine was dissolved in CH₂Cl₂ (5 mL) and AuCl.Me₂S (28 mg, 0.094 mmol, 2.05 equiv.) was added under

argon, stirred at rt for 1 h, then solvent was removed and purified by chromatography to give desired gold complex (41 mg, 82%) as orange solid. Mp >250°C; R_f 0.37 (70% CH₂Cl₂/hexane); ¹H NMR (500 MHz, CDCl₃) 7.66-7.58 (10H, m, CH_{Ar}), 7.56-7.46 (10H, m, CH_{Ar}), 7.32-7.25 (2H, m, CH_{Ar}), 7.14 (2H, t, *J* 9, CH_{Ar}); ¹³C NMR (75 MHz, CDCl₃) 157.7 (d, *J* 269, CqF), 156.9 (d, *J* 265, CqF), 137.5-137.2 (m, CH_{Ar}), 136.6-136.4 (m, CqP), 134.0 (d, *J* 15, CH_{Ar}), 132.8-132.5 (m, CH_{Ar}), 132.6 (s, CH_{Ar}), 129.6 (d, *J* 12, CH_{Ar}), 126.6 (d, *J* 66, CqN), 113.9-113.5 (m, CH_{Ar}). One CqP is missing; ³¹P NMR (121.5 MHz): 25.6 (d, *J* 20); ¹⁹F NMR (282 MHz) -103.9 (dd, *J*₁ 7, *J*₂ 21), -112.5 (d, *J* 7); HRMS (ESI) calcd. for C₃₆H₂₄Au₂ClF₄N₂P₂ [M-Cl]⁺: 1051.0371, found: 1051.0452.

II.6. (Z)-1,2-bis(3-(diphenylphosphino)-2,6-difluorophenyl)diazene (Z-3).

An orange solution of *E*-gold complex *E*-**3** (50 mg, 0.046 mmol) in CH₂Cl₂ (50 mL) was stirred at room temperature and irradiated with UV light (*Semrock*[®] optical filter: 320/40, intensity: 100%, distance: 8.5 cm, time: 2.5 h). The resulting yellow solution was evaporated in the dark at 30 °C and purified by chromatography in dark to give desired *Z*-**3** (34 mg, 69%) as yellow solid; R_f 0.49 (50% EtOAc/hexane) and recovered *E*-**3** (11 mg, 22%)

as light orange solid. R_f 0.40 (50% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) 7.69-7.44 (20H, m, CH_{Ar}), 7.15-7.05 (4H, m, CH_{Ar}); ¹³C NMR (75 MHz, CDCl₃) 156.9 (d, *J* 262, CqF), 149.6 (d, *J* 254, CqF), 137.5-137.3 (m, CqP), 136.4 (m, CH_{Ar}), 134.0 (d, *J* 14, CH_{Ar}), 132.8 (d, *J* 2, CH_{Ar}), 129.6 (d, *J* 13, CH_{Ar}), 126.1 (d, *J* 64, CqN), 114.0-113.6 (m, CH_{Ar}). One CqP is missing; ³¹P NMR (121.5 MHz): 24.8 (s); ¹⁹F NMR (282 MHz) -103.5 (s), -111.5 (s).

B. Synthesis of complexes *E*-6 and *Z*-6:

II.7. (E)-4-((2,6-difluoro-3-iodophenyl)diazenyl)-3,5-difluorophenol

(SI-B). Finely powdered 2,6-difluoro-3-iodoaniline SI-A (255 mg, 1 mmol) was added to 3 mL of HCl (27%) at 0°C. A solution of NaNO₂ (83 mg, 1.2 mmol) in H₂O (3 mL) was added dropwise and the temperature was kept below 5°C. The precipitate was dissolved by dropwise addition of HCl

(37%, 2 mL) and the resulting solution was stirred for 30 min at 0 °C. Excess NaNO₂ was quenched by addition of NH₂SO₃H (25 mg, 0.25 mmol). Meanwhile, in another flask, 3,5-difluorophenol (195 mg, 1.5 mmol) was dissolved in aqueous NaOH (prepared from 400 mg/5 mL of H₂O). This solution was cooled to 0°C and a freshly prepared solution of the precooled (0°C) diazonium salt was added dropwise. During addition the pH was controlled to remain strongly alkaline. The reaction mixture was stirred for 1 h at room temperature. The pH was adjusted to 4 by addition of 2N CH₃COOH. The precipitate was filtered, washed with water and dried under high vacuum to yield the desired azo compound **SI-B** as an orange red solid (324 mg; MS-EI: m/z 397 [M+H]⁺). The crude azo compound was used in next step without further purification. *Caution!* Solid diazonium salts are heat and shock sensitive towards explosion.

II.8. (*E*)-1-(2,6-difluoro-3-iodophenyl)-2-(2,6-difluoro-4methoxyphenyl)diazene (SI-C). A solution of crude (*E*)-4-((2,6-difluoro-3-iodophenyl)diazenyl)-3,5-difluorophenol **SI-B** (324 mg, 0.82 mmol), methyl iodide (190 mg, 1.34 mmol), K_2CO_3 (592 mg, 4.28 mmol), 18crown-6 (55 mg, 0.21 mmol) in dry acetone (25 mL) was refluxed under

F

F

OH

argon for 24 h. After removal of solvent by evaporation, the residue was purified by chromatography to give the desired product **SI-C** (258 mg, 77%, >95/5 : E/Z) as orange solid. R_f 0.52 (40% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃) 7.75-7.66 (1H, m, *p*-CH_{Ar}), 6.90 (1H, ddd, J_1 10, J_2 9, J_3 2, *m*-CH_{Ar}), 6.63-6.57 (2H, dd, J_1 14, J_2 3, CH_{Ar}), 3.88 (3H, s, OCH₃); [Discernable data for Z isomer: 7.85 (1H, dd, J_1 9, J_2 6, *p*-CH_{Ar}), 7.02 (1H, dd, J_1 10, J_2 9, *m*-CH_{Ar}), 6.50 (2H, dd, J_1 14, J_2 3, CH_{Ar}), 3.84 (3H, s, OCH₃)]; ¹³C NMR (75 MHz, CDCl₃) 163.1 (t, J 14, CqOCH₃), 157.6 (dd, J_1 9, J_2 262, CqF), 156.6 (dd, J_1 3, J_2 135, CqF), 153.2 (dd, J_1 4, J_2 132, CqF), 138.6 (dd, J_1 9, J_2 3, CH_{Ar}), 132.3 (t, J 12, CqN), 125.8 (t, J 9, CqN), 114.2 (dd, J_1 4, J_2 21, CHAr), 98.8 (dd, J_1 3, J_2 24, CH_{Ar}), 76.2 (dd, J_1 4, J_2 26, CqI), 56.2 (s, OCH₃); ¹⁹F NMR (282 MHz) -100.2 (s), -116.4 (d, J 11), -121.6 (s); HRMS (ESI) calcd. for C₁₃H₈F₄IN₂O [M+H]⁺: 410.9617, found: 410.9609.

II.9. (E)-1-(2,6-difluoro-4-methoxyphenyl)-2-(3-(diphenylphosphino)-2,6-

difluorophenyl)diazene (**SI-D**). A stirred solution of **SI-C** (220 mg, 0.54 mmol) in anhydrous Et₂O (27 mL) was cooled to -130° C (pentane/liquid N₂) and *n*-BuLi (370 µL, 0.59 mmol, 1.6 M in Hexanes) was added rapidly. To the resulting dark red reaction mixture was added after 5 min, a solution of freshly distilled Ph₂PCl (116 µL, 0.65 mmol) in Et₂O (5 mL). After 10 min

the cooling bath was removed and the reaction mixture was stirred at room temperature for 3 h, evaporated and purified by chromatography to give the desired phosphine (171 mg, 68%, 95/5 : E/Z) as orange solid. R_f 0.30 (10% EtOAc/hexane); ¹H NMR (300 MHz, CDCl₃) 7.41-7.32 (10H, m, CH_{Ar}), 7.00-6.93 (1H, m, p- CH_{Ar}), 6.86-6.77 (1H, m, m- CH_{Ar}), 6.69 (2H, dd, J_1 3, J_2 14, CH_{Ar}), 3.88 (3H, s, OCH₃), [Discernable data for Z isomer: 7.19 (1H, td, J_1 8, J_2 2, p- CH_{Ar}), 6.37 (1H, dd, J_1 2, J_2 11, CH_{Ar}), 3.80 (3H, s, OCH₃)]; ¹³C NMR (75 MHz, CDCl₃) 162.8 (t, J 17, $CqOCH_3$), 158.5 (dd, J_1 8, J_2 262, CqF), 158.6 (m, CqP), 155.7 (dd, J_1 5, J_2 262, CqF), 134.8 (d, J 11, CH_{Ar}), 134.7-134.5 (m, CH_{Ar}), 133.8 (d, J 21, CH_{Ar}), 132.5-132.4 (m, CqP), 131.8 (t, J 8, CqN), 129.3 (s, CH_{Ar}), 128.8 (d, J 7, CH_{Ar}), 122.1 (t, J 20, CqN), 112.8 (dd, J_1 3, J_2 20, CH_{Ar}), 98.9 (dd, J_1 3, J_2 24, CH_{Ar}), 56.2 (OCH₃);

³¹P NMR (121.5 MHz) : -19.0 (d, *J* 62); ¹⁹F NMR (282 MHz): -111.6 (d, *J* 59), -116.8 (d, *J* 12), -121.0 (s); HRMS (ESI) calcd. for C₂₅H₁₈F₄N₂OP [M+H]⁺: 469.1093, found: 469.1086.

II.10. (*E*)-1-(2,6-difluoro-4-methoxyphenyl)-2-(3-(diphenylphosphino)- 2,6-difluorophenyl) diazene (*E*-6). To a stirred solution of phosphine **SI-D** in CH_2Cl_2 (5 mL) and AuCl.Me₂S (28 mg, 0.094 mmol, 2.05 equiv.) was added at 0 °C under argon. The resulting solution stirred at rt for 1 h, then solvent was removed and purified by chromatography to give desired gold complex (47 mg, 75%, >95/5 : *E/Z*) CIAU

FNNFF PPh_2

as orange-red solid. Mp 90-92°C; R_f 0.54 (50% EtOAc/hexane); ¹H NMR (500 MHz, CDCl₃): 7.69-7.45 (10H, m, CH_{Ar}), 7.32-7.19 (1H, m, CH_{Ar}), 7.12 (1H, t, *J* 8, CH_{Ar}), 6.59 (2H, dd, *J*₁ 3, *J*₂ 14, CH_{Ar}), 3.89 (3H, s, OCH₃); ¹³C NMR (75 MHz, CDCl₃): 163.5 (t, *J* 15, CqOCH₃), 160.0 (dd, *J*₁ 14, *J*₂ 230, CqF), 157.7 (dd, *J*₁ 7, *J*₂ 264, CqF), 158.7-158.5 (m, CqP), 152.7 (dd, *J*₁ 8, *J*₂ 253, CqF), 135.7 (td, *J*₁ 11, *J*₂ 5, CH_{Ar}), 134.0 (d, *J* 15, CH_{Ar}), 132.4 (s, CH_{Ar}), 129.5 (d, *J* 13, CH_{Ar}), 127.4 (s, CqN), 126.5 (s, CqN), 113.8-113.3 (m, CH_{Ar}), 99.2-98.5 (m, CH_{Ar}), 56.3 (s, OCH₃); ³¹P NMR (121.5 MHz): 26.4 (s); ¹⁹F NMR (282 MHz): -105.7 (m), -114.4 (d, *J* 7), -115.7 (d, *J* 11); HRMS (ESI) calcd. for C₂₇H₂₀AuF₄N₃OP [M-Cl+CH₃CN]⁺: 706.0946, found: 706.0938.

II.11. (*Z*)-1-(2,6-difluoro-4-methoxyphenyl)-2-(3-(diphenylphosphino)-2,6-difluorophenyl) diazene (*Z*-6). An orange solution of *E*-6 (25 mg, 0.035 mmol) in CH₂Cl₂ (50 mL) was stirred at room temperature and irradiated with UV light (*Semrock*[®] optical filter: 320/40, intensity: 100%, distance: 8.5 cm, time: 2 h). The resulting solution yellow solution was evaporated in the dark at 30°C and purified by HPLC to give *Z*-6 (15 mg, 60%, >95/5 : *Z/E*) as

yellow solid and recovered *E*-**6** (9 mg, 35%) as light orange solid. ¹H NMR (500 MHz, CDCl₃) 7.58-7.53 (2H, m, CH_{Ar}), 7.51-7.44 (8H, m, CH_{Ar}), 7.23 (1H, dt, J_1 14, J_2 7, CH_{Ar}), 7.04 (1H, t, J 9, CH_{Ar}), 6.40 (2H, d, J 10, CH_{Ar}), 3.85 (3H, s, CH_3 O); ¹³C NMR (75 MHz, CDCl₃) 161.8-161.5 (m, CqP), 156.9 (dd, J_1 262, J_2 7, CqF), 152.8 (dd, J_1 253, J_2 8, CqF), 150.8 (d, J 263, CqF), 135.6-135.3 (m, CH_{Ar}), 133.8 (d, J 14, CH_{Ar}), 132.4 (d, J 2, CH_{Ar}), 129.4 (d, J 13, CH_{Ar}), 127.0 (CqN), 126.2 (CqN), 113.3 (dd, J_1 17, J_2 12, CH_{Ar}), 98.7 (dd, J_1 24, J_2 3, CH_{Ar}), 56.2 (s, CH_3 O). One CqP is missing; ³¹P NMR (121.5 MHz) 27.0 (s); ¹⁹F NMR (282 MHz): -103.3 (s), -111.5 (s), -117.0 (s).

III. NMR Spectra (¹H, ¹³C, ¹⁹F, and ³¹P NMR)

III.1. (SI-A).

III.2. (E)-1,2-bis(2,6-difluoro-3-iodophenyl)diazene (1).

III.3. (*E*)-1,2-bis(3-(diphenylphosphino)-2,6-difluorophenyl)diazene.

III.4. (E)-1,2-bis(3-(diphenylphosphino)-2,6-difluorophenyl)diazene (2).

III.7. (E)-1-(2,6-difluoro-3-iodophenyl)-2-(2,6-difluoro-4-methoxyphenyl)diazene (SI-C).

III.8.(*E*)-1-(2,6-difluoro-4-methoxyphenyl)-2-(3-(diphenylphosphino)-2,6-difluorophenyl)diazene (SI-D).

diazene (Z-6).

IV. Photochromic Behaviour of complexes 3 and 6.

Complexes *E*-3 and *Z*-3: study of isomeric transition by ¹⁹F NMR.

A solution of *E*-3 (2.4 mg) in CD₂Cl₂ (0.5 mL) was placed in NMR tube and irradiated with UV light (320/40 nm). The rate of isomerization was monitored by ¹⁹F NMR. The photo-stationary state (PPS) was reached after 16 minutes of irradiation. At PPS the isomeric ratio obtained was E:Z = 27:73.

Changes in ¹⁹F NMR spectrum upon photo-isomerization in [d₂]-dichloromethane.

Time of	%	%
irradiation	E isomer	Z isomer
0 min	97	3
4 min	55	45
8 min	36	64
12 min	29	71
16 min	28	72
20 min	27	73
24 min	27	73

Complexes *E*-6 and *Z*-6: study of isomeric Transition by ¹H NMR:

A solution of *E*-**6** (5 mg) in CD₂Cl₂ (0.5 mL) was placed in NMR tube and irradiated with UV light (320/40 nm). The rate of isomerization was monitored by ¹H NMR. The photo-stationary state (PPS) was reached after 29 minutes of irradiation. At PPS the isomeric ration obtained was E:Z = 42:58.

Changes in ¹H NMR spectrum upon photo-isomerization in [d₂]-dichloromethane.

Time of	% of <i>E</i>	% of <i>Z</i>
irradiation	isomer	isomer
0	78	22
1	74	26
3	67	33
5	61	39
9	53	47
13	48	52
21	43	57
29	42	58

Spectroscopic Measurements:

Acetonitrile was purchased from Aldrich (spectrometric grade), UV/Vis absorption spectra were recorded on a Cary5000 spectrophotometer from Agilent Technologies using a Peltier cuvette holder to monitor the temperature. Photo-isomerizations were induced by a continuous irradiation Hg/Xe lamp (Hamamatsu, LC6 Lightningcure, 200 W) equipped with narrow band interference filters of appropriate wavelengths (Semrock FF01-320/40 for $\lambda_{irr} = 320$ nm; FF01-406/15-25 for $\lambda_{irr} = 406$ nm). The irradiation power was measured using a photodiode from Ophir (PD300-UV).

Figure SI1. Magnification of the absorption spectrum of *E*-**3** and PSS 320 nm (*Z*-**3** major) in MeCN at 25 °C allowing determination of a ratio *Z*-**3**:*E*-**3** \approx 65:35 in PSS 320 nm.

Figure SI2. Left: Absorption spectrum of *E*-6 (major) in MeCN at 25 °C and its stepwise evolution upon irradiation pulses at 320 nm (4 mW.cm⁻²). Right: Evolution of absorption spectrum of the previous solution at PSS 320 nm (*Z*-6 major) in MeCN at 25 °C and its stepwise evolution upon irradiation pulses at 406 nm (10 mW.cm⁻²).

General method for the determination of the half-lives of the complexes 3 and 6.

A solution of complex *E*-**3** or *E*-**6** (C ~ 20 μ M) in MeCN at 25°C was irradiated at 320 nm (4 mW.cm⁻²) for 6 min. Then, the sample was placed in a thermostated cuvette holder at 60°C, and *Z* \rightarrow *E* thermal back-isomerization was monitored by recording absorption at an appropriate wavelength (310 nm and 335 nm for **3** and **6**, respectively).

Absorption was plotted versus time and fitted with an exponential curve corresponding to a first order kinetics reaction.

$$A(t) = A_{\infty} + (A_0 - A_{\infty})e^{-kt}$$

where A(t) is the absorption at time t

 A_0 the absorption after irradiation

 A_{∞} the absorbance after full thermal relaxation in the dark, corresponding to the absorption before irradiation (*E*-isomer)

k the kinetic constant in min^{-1}

The half-life $t_{1/2}$ in minutes of the (Z) isomer was calculated with the following equation: $t_{\frac{1}{2}} = \frac{ln2}{k}$

Figure SI3. Left: Absorption spectra of *E*-**3** in MeCN at 25°C before (black line) and after irradiation (red line) at 320 nm (6 min at 4 mW.cm⁻²), and its evolution in the dark at 60°C (red to violet lines). Right: Evolution of absorption at 310 nm as a function of time in the dark at 60°C.

Figure SI4. Left: Absorption spectra of *E*-**6** in MeCN at 25°C before (black line) and after irradiation (red line) at 320 nm (6 min at 4 mW.cm⁻²), and its evolution upon resting in the dark at 60°C (red to violet lines). Right: Evolution of absorption at 335 nm as a function of time in the dark at 60°C.

V. Intramolecular hydroamination of N-alkenyl ureas 4.

We have investigated the comparative rate of reaction for the hydroamination of *N*-alkenyl urea **4** with complexes *E*-**3**, *Z*-**3**, *E*-**6**, *Z*-**6** and Ph₃PAuCl. A careful weighed sample of *N*-alkenyl urea (0.15 mmol), gold complex and internal standard were dissolved in CD_2Cl_2 (1.5 ml). 0.5 ml of the solution was taken out and ¹H NMR was recorded before initiating the reaction. In order to initiate the reaction, the silver salt (6 mol% of AgSbF₆ with respect to the remaining 0.1 mmol of substrate) was weighed in 1 mL screw capped vial and then the 1 ml solution remained was transferred to this 1 mL screw capped vial and time was noted (t = 0). The reaction mixture was quickly mixed (2-3 min) and 0.5 ml of the reaction was monitored by automatic recording of ¹H NMR spectra at regular time intervals.

¹H NMR monitoring of the reaction with PPh₃-Au-Cl

¹H NMR monitoring of the reaction with *E*-3

¹H NMR monitoring of the reaction with Z-3

hài

5

4

t = 20 min

t = 11 min

t = 0 min

3

2

[ppm]

¹H NMR monitoring of the reaction with *E-3*: irradiation at 320 nm after 30 min reaction.

¹H NMR monitoring of the reaction with *E-6*

SI36

¹H NMR monitoring of the reaction with *Z*-6

Reaction profiles for the intramolecular Hydroamination of *N***-Alkenyl Ureas:**

The conversion rate for the hydroamination reactions with complexes E-3, Z-3, E-6, Z-6 and Ph₃PAuCl are plotted against time.

VI. Intramolecular [4+2] cycloadditions of 7:

A careful weighed sample of dimethyl 2-(3-methylbut-2-enyl)-2-(3-phenylprop-2-ynyl)malonate, gold complex and internal standard was dissolved in CD_2Cl_2 and proton NMR was taken. In order to initiate the reaction, the silver salt (AgSbF₆) was weighed in a 1 mL screw capped vial and then the solution from NMR tube was transferred to this 1 mL screw capped vial and time was noted. The reaction mixture was quickly mixed and transferred back to the NMR tube with a syringe. NMR spectra were recorded at the given time intervals.

The NMR conversion rates are plotted against the time.

VII. X-Ray crystal structure determination

Single crystals suitable for X-ray diffraction were obtained by recrystallization from CHCl₃-CH₂Cl₂-heptane mixture. X-ray crystallographic data were collected on a Rigaku XtaLabPro diffractometer equipped with a microfocus source (MicroMax003_Mo) and multilayer confocal mirrors (Mo K α radiation, $\lambda = 0.71075$ Å) using ω -scans. Data were indexed, integrated and scaled using *d***TREK* from the *CrystalClear*⁴ software suite (*E*-3) or *CrysalisPRO*⁵ (*Z*-3, *E*-6 and *Z*-6). They were also corrected for polarization, Lorentz and absorption effects (*REQAB* (*E*-3) or *CrysalisPRO* (*Z*-3, *E*-6 and *Z*-6)). For each complex, the structure was solved by direct methods with SHELXT³, and refined with SHELXL-2014/7⁶. The model was refined using full-matrix least-squares, all nonhydrogen atoms were refined with anisotropic displacement parameters. H atoms have been added geometrically and treated as riding on their parent atoms (U_H = 1.2 U_C).

For *E*-3, data quality was not so good despite suitable redundancy (ca. 4). This may be due to poor crystals quality and/or twin crystals. Attempts to detwin data using CrysalisPRO were unsuccessful and lead to high Rint, so a TWIN refinement was done (scales: 0.9454(12), 0.0546(12)). Restraints were applied along the entire connectivity set, using RIGU command (with standard deviation values), leading to more reasonable anisotropic displacement parameters. CHCl₃ and DCM molecules were refined with free occupancy factors using FVAR variables (CHCl₃ occupancy factors: 0.77(2) and 0.64(2), DCM occupancy factor: 0.44(4)).

For Z-3, Restraints were applied on CHCl₃ molecule, using RIGU command (with standard deviation values), leading to more reasonable anisotropic displacement parameters. CHCl₃ molecule was refined over two positions using PART command and its occupancy factor fixed at 0.4 for each position.

For *E*-6, Phenyl rings (C1-C6, C7-C12, C26-C31 and C32-37) were refined as rigid bodies (AFIX 66, C-C distance of 1.39 Å and bond angles of 120°). Due to a disorder on N=N bond, we refined N atoms over two positions with restraints (DFIX for C-N and N=N bond length, distances determined from Mogul database (Cambridge Structural Database)) and using EADP command to equate their anisotropic displacement parameters.

Molecular graphics were computed with Ortep-3⁷. CCDC 1484587-1484590 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

⁴ Rigaku, CrystalClear-SM Expert 2.1 b43. (2015).

⁵ Rigaku Oxford Diffraction, CrysAlisPro Software system, version 38.41, Rigaku Corporation, Oxford, UK. (2015).

⁶ Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. Found. Adv. **2015**, 71, 3–8.

⁷ Farrugia, L. J. *ORTEP* -3 for Windows - a version of *ORTEP* -III with a Graphical User Interface (GUI). *J. Appl. Crystallogr.* **1997**, *30*, 565–565.

Figure SI5 : Ortep view of the complex (Color scheme: C, gray; N, blue; F, green; Au, brown; Cl, pale green; P, orange)

C_{37.85}H_{26.29}Au₂Cl_{7.115}F₄N₂P₂ (*M*=1293.03 g/mol): triclinic, space group P-1 (no. 2), *a* = 11.051(3) Å, *b* = 15.816(4) Å, *c* = 16.857(5) Å, *a* = 109.459(3)°, *β* = 103.933(5)°, *γ* = 104.747(5)°, *V* = 2509.4(12) Å³, *Z* = 2, *T* = 130.0 K, μ (MoK α) = 6.325 mm⁻¹, *Dcalc* = 1.713 g/cm³, 46126 reflections measured (7.232° ≤ 2 Θ ≤ 50.702°), 9151 unique (*R*_{int} = 0.1024, R_{sigma} = 0.0966) which were used in all calculations. The final *R*₁ was 0.1038 (I > 2 σ (I)) and *wR*₂ was 0.2689 (all data).

Table 1 Crystal data and structure refinement for E-3					
CCDC number	1484589				
Empirical formula	$C_{37.85}H_{26.29}Au_2Cl_{7.12}F_4N_2P_2$				
Formula weight	1293.03				
Temperature/K	130.0				
Crystal system	triclinic				
Space group	P-1				
a/Å	11.051(3)				
b/Å	15.816(4)				
c/Å	16.857(5)				
a/°	109.459(3)				
β/°	103.933(5)				
γ/°	104.747(5)				
Volume/Å ³	2509.4(12)				
Z	2				
ρ _{calc} g/cm ³	1.713				
μ/mm ⁻¹	6.325				
F(000)	1224.5				
Crystal size/mm ³	0.2 imes 0.09 imes 0.07				
Radiation	MoK α ($\lambda = 0.71075$)				
2 Θ range for data collection/°	7.232 to 50.702				
Index ranges	$-14 \le h \le 14, -20 \le k \le 19, -21 \le l \le 21$				
Reflections collected	46126				
Independent reflections	9151 [$R_{int} = 0.1024$, $R_{sigma} = 0.0966$]				
Data/restraints/parameters	9151/423/533				
Goodness-of-fit on F ²	1.119				
Final R indexes [I>=2σ (I)]	$R_1 = 0.1038, wR_2 = 0.2582$				
Final R indexes [all data]	$R_1 = 0.1239, wR_2 = 0.2689$				
Largest diff. peak/hole / e Å ⁻³	5.21/-2.74				

Table 2 Fr	actional Atomic Coord Uea is defined as 1	inates and Equivalent Is /3 of of the trace of the o	otropic Displacement Pa orthogonalised U11 tenso	arameters for <i>E</i> -3.
Atom	<i>x</i>	y	Z	U(eq)
C1	0.473(2)	0.2100(18)	0.7931(16)	0.038(4)
C2	0.495(3)	0.297(2)	0.860(2)	0.061(7)
C3	0.562(3)	0.388(2)	0.860(2)	0.061(6)
C4	0.596(2)	0.380(2)	0.7851(19)	0.050(5)
C5	0.571(3)	0.294(2)	0.717(2)	0.059(6)
C6	0.517(2)	0.211(2)	0.7215(17)	0.046(5)
C7	0.655(2)	0.099(2)	0.8426(18)	0.047(6)
C8	0.531(2)	0.0584(19)	0.8432(16)	0.039(4)
C9	0.500(3)	-0.010(2)	0.8787(18)	0.049(6)
C10	0.611(3)	-0.031(2)	0.915(2)	0.053(6)
C11	0.733(2)	0.0010(16)	0.9162(15)	0.036(4)
C12	0.755(2)	0.066(2)	0.8767(19)	0.050(6)
C13	0.302(2)	0.0092(17)	0.6857(15)	0.035(4)
C14	0.1972(18)	0.0204(15)	0.6336(13)	0.026(3)
C15	0.114(2)	-0.0462(17)	0.5487(14)	0.032(4)
C16	0.133(2)	-0.1310(17)	0.5162(14)	0.033(4)
C17	0.239(2)	-0.1490(19)	0.5636(16)	0.043(5)
C18	0.325(2)	-0.0753(17)	0.6485(15)	0.037(4)
C19	0.748(2)	-0.0912(16)	0.6345(15)	0.035(4)
C20	0.639(2)	-0.0768(16)	0.5801(15)	0.033(4)
C21	0.645(2)	0.0127(17)	0.5838(16)	0.037(4)
C22	0.761(2)	0.0896(17)	0.6430(16)	0.036(4)
C23	0.873(2)	0.0826(18)	0.6970(17)	0.042(5)
C24	0.859(3)	-0.0100(19)	0.6938(19)	0.051(6)
C25	0.701(2)	-0.2913(17)	0.5207(16)	0.037(4)
C26	0.748(2)	-0.253(2)	0.4678(18)	0.046(5)
C27	0.738(3)	-0.318(2)	0.3826(19)	0.053(5)
C28	0.684(3)	-0.410(2)	0.360(2)	0.058(6)
C29	0.633(4)	-0.447(2)	0.416(2)	0.070(8)
C30	0.643(3)	-0.3866(19)	0.496(2)	0.052(5)
C31	0.8/1(2)	-0.1937(17)	0.7124(16)	0.036(4)
C32	0.880(2)	-0.184(2)	0.7997(18)	0.050(6)
C33	0.999(2)	-0.1/1(2)	0.8018(19)	0.051(6)
C34 C25	1.112(3) 1.106(2)	-0.105(2)	0.8351(19) 0.7500(17)	0.050(7)
C35	1.100(2)	-0.1817(19) 0.105(2)	0.7509(17)	0.042(5)
C30 C37	0.963(2) 0.146(6)	-0.193(2)	0.0800(18)	0.040(0)
C37	0.140(0) 0.411(4)	-0.437(4)	0.437(3) 0.871(3)	0.087(10)
C30 An1	0.411(4) 0.25512(8)	-0.340(3) 0.10303(7)	0.871(3)	0.000(7)
Aul Au2	0.23312(8) 0.53296(9)	0.10393(7) 0.25386(7)	0.87030(0) 0.66724(7)	0.0300(3) 0.0428(3)
Cl1	0.03270(7)	-0.23300(7) 0.1063(6)	0.00724(7) 0.9471(5)	0.0420(3) 0.0548(17)
	0.1039(0) 0.3330(7)	-0.3002(6)	0.9471(5) 0.6871(6)	0.0540(17)
C12 C13	0.3330(7) 0.2851(18)	-0.4199(13)	0.0071(0) 0.4250(11)	0.002(2) 0.101(6)
	0.2631(10) 0.0614(15)	-0.5810(11)	0.1250(11) 0.3885(15)	0.107(0)
CI5	0.033(2)	-0.4039(15)	0.3009(13) 0.4169(18)	0.145(10)
CI7	0.5784(13)	-0.3214(12)	0.8871(9)	0.099(5)
Cl8	0.3841(11)	-0.2454(9)	0.9453(7)	0.073(4)
Cl6	0.3521(16)	-0.4432(9)	0.8884(9)	0.092(4)
F1	0.1736(12)	0.1032(9)	0.6727(8)	0.036(3)
F2	0.0511(15)	-0.2017(11)	0.4358(9)	0.050(3)
F3	0.7651(15)	0.1782(10)	0.6512(10)	0.051(3)
F4	0.5301(13)	-0.1533(10)	0.5256(9)	0.044(3)
N1	-0.0094(18)	-0.0425(14)	0.4956(13)	0.036(4)
N2	0.5388(18)	0.0337(13)	0.5386(12)	0.034(4)
P1	0.3956(5)	0.0990(5)	0.8013(4)	0.0320(12)
P2	0.7154(6)	-0.2086(4)	0.6338(4)	0.0337(12)
C19	0.917(3)	0.321(3)	0.879(3)	0.154(18)

Cl10	1.166(3)	0.325(3)	0.846(4)	0.170(19)
C39	1.086(4)	0.336(6)	0.925(3)	0.13(2)

Table 3 Anisotropic Displacement Parameters for E-3								
Atom	U11	U22	U33	U23	U13	U12		
C1	0.022(8)	0.051(6)	0.039(8)	0.021(5)	0.004(6)	0.014(6)		
C2	0.064(16)	0.052(7)	0.057(10)	0.016(6)	0.026(10)	0.011(7)		
C3	0.055(15)	0.053(9)	0.065(11)	0.018(7)	0.021(10)	0.011(8)		
C4	0.029(11)	0.048(9)	0.064(10)	0.020(7)	0.015(9)	0.005(8)		
C5	0.061(15)	0.056(8)	0.062(11)	0.028(7)	0.026(10)	0.018(8)		
C6	0.040(11)	0.053(9)	0.045(9)	0.023(7)	0.014(8)	0.013(8)		
C7	0.033(7)	0.075(13)	0.057(14)	0.041(12)	0.023(7)	0.034(8)		
C8	0.034(6)	0.059(10)	0.042(10)	0.028(9)	0.018(6)	0.029(6)		
С9	0.041(8)	0.068(12)	0.055(14)	0.038(12)	0.019(8)	0.030(8)		
C10	0.044(8)	0.064(14)	0.066(15)	0.039(13)	0.017(8)	0.029(8)		
C11	0.039(8)	0.031(9)	0.031(10)	0.004(8)	0.008(7)	0.019(7)		
C12	0.032(8)	0.069(13)	0.070(15)	0.042(13)	0.020(8)	0.033(8)		
C13	0.027(7)	0.047(7)	0.035(5)	0.019(5)	0.010(5)	0.019(5)		
C14	0.018(6)	0.041(6)	0.030(5)	0.021(5)	0.016(4)	0.013(5)		
C15	0.024(7)	0.047(7)	0.031(6)	0.018(5)	0.013(5)	0.016(5)		
C16	0.030(7)	0.047(7)	0.031(6)	0.019(5)	0.016(5)	0.019(6)		
C17	0.039(8)	0.052(9)	0.040(7)	0.017(6)	0.012(6)	0.024(7)		
C18	0.032(8)	0.051(7)	0.035(7)	0.019(6)	0.014(6)	0.022(6)		
C19	0.035(6)	0.042(6)	0.040(8)	0.024(5)	0.021(5)	0.019(5)		
C20	0.034(6)	0.041(6)	0.038(8)	0.022(5)	0.020(6)	0.020(5)		
C21	0.034(6)	0.041(6)	0.048(9)	0.025(5)	0.020(6)	0.021(5)		
C22	0.034(7)	0.044(6)	0.044(8)	0.025(6)	0.022(6)	0.018(5)		
C23	0.034(8)	0.046(8)	0.054(10)	0.028(7)	0.017(7)	0.016(6)		
C24	0.045(8)	0.048(7)	0.057(11)	0.025(6)	0.008(8)	0.017(6)		
C25	0.018(8)	0.048(7)	0.049(6)	0.019(5)	0.013(6)	0.020(6)		
C26	0.039(11)	0.056(9)	0.055(8)	0.025(7)	0.023(8)	0.029(8)		
C27	0.044(13)	0.059(9)	0.060(9)	0.020(7)	0.027(9)	0.025(9)		
C28	0.054(14)	0.055(9)	0.065(10)	0.018(8)	0.026(10)	0.025(9)		
C29	0.08(2)	0.048(9)	0.073(10)	0.016(7)	0.040(11)	0.019(9)		
C30	0.050(12)	0.047(7)	0.063(9)	0.021(6)	0.025(9)	0.024(7)		
C31	0.029(6)	0.043(11)	0.046(7)	0.022(7)	0.017(5)	0.021(6)		
C32	0.029(8)	0.082(19)	0.049(7)	0.031(9)	0.019(6)	0.028(9)		
C33	0.032(8)	0.080(18)	0.051(8)	0.033(10)	0.019(6)	0.027(9)		
C34	0.032(8)	0.10(2)	0.052(9)	0.039(10)	0.020(7)	0.034(10)		
C35	0.032(8)	0.063(15)	0.053(8)	0.033(9)	0.021(6)	0.030(8)		
C36	0.033(7)	0.074(16)	0.052(9)	0.035(9)	0.023(6)	0.035(8)		
C37	0.093(13)	0.063(13)	0.11(2)	0.055(13)	0.019(12)	0.020(9)		
C38	0.067(12)	0.070(11)	0.067(14)	0.029(9)	0.027(10)	0.032(9)		
Aul	0.024/(4)	0.0584(6)	0.0340(5)	0.0210(4)	0.0127(4)	0.0224(4)		
Au2	0.0339(5)	0.0513(6)	0.0704(7)	0.0403(5)	0.0312(5)	0.0262(4)		
	0.037(3)	0.098(5)	0.063(4)	0.047(4)	0.036(3)	0.044(4)		
	0.044(3)	0.073(5)	0.108(0)	0.057(5)	0.051(4)	0.034(3)		
	0.094(10)	0.096(11)	0.081(10)	0.041(9)	0.010(8)	-0.001(7)		
	0.000(9) 0.122(12)	0.062(8)	0.175(18)	0.051(9)	0.015(9)	0.021(0)		
	0.123(13)	0.090(12) 0.150(12)	0.18(2)	0.045(12)	-0.007(12)	0.030(10)		
	0.070(7)	0.130(12) 0.084(7)	0.060(9)	0.033(9)	0.036(0) 0.016(5)	0.033(7)		
	0.071(7) 0.120(11)	0.004(7)	0.002(0)	0.020(3)	0.010(3)	0.040(0)		
C10 F1	0.127(11) 0.031(6)	0.072(7)	0.000(0)	0.030(0) 0.021(5)	0.044(0)	0.040(7)		
F1 F2	0.034(0)	0.040(0) 0.058(7)	0.039(0)	0.021(3) 0.013(5)	0.019(3)	0.022(3)		
г <i>4</i> F3	0.050(7) 0.051(8)	0.030(7)	0.055(5)	0.013(3) 0.027(6)	0.000(3)	0.022(0)		
г <i>э</i> F/	0.031(6)	0.0+3(0) 0.0/3(6)	0.003(9) 0.054(7)	0.027(0) 0.021(5)	0.020(7)	0.019(3)		
T4	0.037(0)	0.0+3(0)	0.03+(7)	0.021(3)	0.01+(3)	0.020(3)		

N2	0.034(7)	0.046(10)	0.042(9)	0.028(8)	0.025(6)	0.024(7)
P1	0.022(2)	0.049(3)	0.031(3)	0.020(2)	0.012(2)	0.017(2)
P2	0.028(3)	0.040(3)	0.044(3)	0.022(3)	0.017(2)	0.019(2)
Cl9	0.14(2)	0.19(4)	0.15(3)	0.08(3)	0.05(2)	0.06(2)
Cl10	0.16(3)	0.12(3)	0.26(4)	0.10(3)	0.09(3)	0.04(2)
C39	0.12(3)	0.06(4)	0.22(4)	0.09(3)	0.05(2)	0.03(3)

		Table 4 Bond	Lengths for E-3		
Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.37(4)	C22	C23	1.40(3)
C1	C6	1.41(3)	C22	F3	1.35(3)
C1	P1	1.81(2)	C23	C24	1.42(3)
C2	C3	1.44(4)	C25	C26	1.36(3)
C3	C4	1.38(4)	C25	C30	1.35(4)
C4	C5	1.35(4)	C25	P2	1.86(2)
C5	C6	1.33(4)	C26	C27	1.42(4)
C7	C8	1.37(3)	C27	C28	1.30(4)
C7	C12	1.41(3)	C28	C29	1.41(4)
C8	С9	1.40(3)	C29	C30	1.32(4)
C8	P1	1.85(2)	C31	C32	1.41(3)
С9	C10	1.42(3)	C31	C36	1.41(3)
C10	C11	1.30(4)	C31	P2	1.81(2)
C11	C12	1.41(3)	C32	C33	1.38(3)
C13	C14	1.37(3)	C33	C34	1.41(3)
C13	C18	1.39(3)	C34	C35	1.34(4)
C13	P1	1.82(2)	C35	C36	1.44(3)
C14	C15	1.37(3)	C37	Cl3	1.58(7)
C14	F1	1.38(2)	C37	Cl4	1.73(6)
C15	C16	1.36(3)	C37	Cl5	1.71(6)
C15	N1	1.47(3)	C38	Cl7	1.73(4)
C16	C17	1.40(3)	C38	Cl8	1.75(4)
C16	F2	1.34(3)	C38	Cl6	1.74(4)
C17	C18	1.41(3)	Au1	Cl1	2.276(6)
C19	C20	1.44(3)	Au1	P1	2.226(5)
C19	C24	1.38(4)	Au2	Cl2	2.287(6)
C19	P2	1.79(2)	Au2	P2	2.231(6)
C20	C21	1.38(3)	N1	N1 ¹	1.26(4)
C20	F4	1.32(3)	N2	$N2^2$	1.28(4)
C21	C22	1.38(3)	Cl9	C39	1.7603
C21	N2	1.42(3)	Cl10	C39	1.7599

¹-X,-Y,1-Z; ²1-X,-Y,1-Z

Table 5 Bond Angles for E-3							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C6	118(2)	C22	C23	C24	116(2)
C2	C1	P1	120(2)	C19	C24	C23	122(2)
C6	C1	P1	122.4(19)	C26	C25	P2	118.8(19)
C1	C2	C3	123(3)	C30	C25	C26	124(3)
C4	C3	C2	113(3)	C30	C25	P2	118(2)
C5	C4	C3	124(3)	C25	C26	C27	117(3)
C6	C5	C4	121(3)	C28	C27	C26	118(3)
C5	C6	C1	120(3)	C27	C28	C29	123(3)
C8	C7	C12	117(2)	C30	C29	C28	119(3)
C7	C8	С9	124(2)	C29	C30	C25	119(3)
C7	C8	P1	119.2(18)	C32	C31	C36	120(2)
С9	C8	P1	117.0(17)	C32	C31	P2	119.7(17)

C8	С9	C10	113(2)	C36	C31	P2	120.7(18)
C11	C10	С9	128(3)	C33	C32	C31	121(2)
C10	C11	C12	115(2)	C32	C33	C34	118(2)
C11	C12	C7	122(2)	C35	C34	C33	124(2)
C14	C13	C18	117(2)	C34	C35	C36	119(2)
C14	C13	P1	119.3(17)	C31	C36	C35	119(2)
C18	C13	P1	123.6(16)	Cl3	C37	Cl4	117(4)
C13	C14	F1	116.1(18)	Cl3	C37	C15	119(3)
C15	C14	C13	124(2)	C15	C37	Cl4	108(3)
C15	C14	F1	119.7(17)	Cl7	C38	C18	114(2)
C14	C15	N1	125.5(19)	Cl7	C38	Cl6	105(2)
C16	C15	C14	117.8(19)	Cl6	C38	C18	109(2)
C16	C15	N1	115.7(19)	P1	Au1	Cl1	177.5(2)
C15	C16	C17	122(2)	P2	Au2	Cl2	173.7(3)
F2	C16	C15	121.3(19)	$N1^1$	N1	C15	110(2)
F2	C16	C17	116(2)	$N2^2$	N2	C21	114(2)
C16	C17	C18	117(2)	C1	P1	C8	107.5(11)
C13	C18	C17	122(2)	C1	P1	C13	105.7(11)
C20	C19	P2	117.1(17)	C1	P1	Au1	115.6(8)
C24	C19	C20	117(2)	C8	P1	Au1	114.3(8)
C24	C19	P2	124.9(18)	C13	P1	C8	104.4(11)
C21	C20	C19	123(2)	C13	P1	Au1	108.5(7)
F4	C20	C19	117.5(19)	C19	P2	C25	106.9(11)
F4	C20	C21	120.0(19)	C19	P2	C31	102.6(11)
C20	C21	N2	126(2)	C19	P2	Au2	110.6(7)
C22	C21	C20	117(2)	C25	P2	Au2	113.1(7)
C22	C21	N2	117(2)	C31	P2	C25	106.5(10)
C21	C22	C23	125(2)	C31	P2	Au2	116.2(8)
F3	C22	C21	117.6(19)	Cl10	C39	C19	112.9
F3	C22	C23	118(2)				

¹-X,-Y,1-Z; ²1-X,-Y,1-Z

Table 6 Atomic Occupancy for E-3							
Atom	Occupancy	Atom	Occupancy	Atom	Occupancy		
C37	0.64(2)	C38	0.77(2)	C39	0.44(4)		
H37	0.64(2)	H38	0.77(2)	H39A	0.44(4)		
Cl3	0.64(2)	Cl6	0.77(2)	H39B	0.44(4)		
Cl4	0.64(2)	Cl7	0.77(2)	C19	0.44(4)		
Cl5	0.64(2)	Cl8	0.77(2)	Cl10	0.44(4)		

Crystal Data for Z-3:

Figure SI6 : Ortep view of the complex (Color scheme: C, gray; N, blue; F, green; Au, brown; Cl, pale green; P, orange)

 $C_{36.75}H_{24.75}Au_2Cl_{4.25}F_4N_2P_2$ (*M* =1182.85 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 18.4530(16) Å, *b* = 18.5065(19) Å, *c* = 11.1568(13) Å, β = 97.085(10)°, *V* = 3781.0(7) Å³, *Z* = 4, *T* = 250 K, μ (MoK α) = 8.198 mm⁻¹, *Dcalc* = 2.078 g/cm³, 55840 reflections measured (6.978° $\leq 2\Theta \leq 59.556°$), 9695 unique (*R*_{int} = 0.0781, R_{sigma} = 0.0596) which were used in all calculations. The final *R*₁ was 0.0403 (I > 2 σ (I)) and *wR*₂ was 0.1115 (all data).

Table 1 Crystal data and structure refinement for Z-3				
CCDC number	1484590			
Empirical formula	$C_{36.8}H_{24.8}Au_2Cl_{4.4}F_4N_2P_2$			
Formula weight	1182.85			
Temperature/K	250			
Crystal system	monoclinic			
Space group	$P2_1/c$			
a/Å	18.4530(16)			
b/Å	18.5065(19)			
c/Å	11.1568(13)			
a/°	90			
β/°	97.085(10)			
γ/°	90			
Volume/Å ³	3781.0(7)			
Z	4			
ρ _{calc} g/cm ³	2.078			
μ/mm ⁻¹	8.198			
F(000)	2234.0			
Crystal size/mm ³	0.24 imes 0.16 imes 0.11			
Radiation	MoKa ($\lambda = 0.71073$)			
20 range for data collection/ $^{\circ}$	6.978 to 59.556			
Index ranges	$-25 \le h \le 25, -24 \le k \le 25, -15 \le l \le 15$			
Reflections collected	55840			
Independent reflections	9695 [$R_{int} = 0.0781$, $R_{sigma} = 0.0596$]			
Data/restraints/parameters	9695/36/493			
Goodness-of-fit on F ²	1.029			
Final R indexes [I>=2σ (I)]	$R_1 = 0.0403, wR_2 = 0.0991$			
Final R indexes [all data]	$R_1 = 0.0727, wR_2 = 0.1115$			
Largest diff. peak/hole / e Å ⁻³	1.25/-0.97			

Table 2 Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Z-3. Ueg is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.						
Atom	x	у	z	U(eq)		
Au1	0.59832(2)	0.60511(2)	0.51272(2)	0.05450(9)		
Au2	0.97394(2)	0.38836(2)	0.66358(2)	0.05508(9)		
C1	0.5510(3)	0.5387(3)	0.7651(4)	0.0483(12)		
C2	0.5449(3)	0.6070(3)	0.8148(6)	0.0608(15)		
C3	0.4915(4)	0.6222(4)	0.8859(6)	0.0709(17)		
C4	0.4418(4)	0.5687(4)	0.9057(5)	0.0703(18)		
C5	0.4464(3)	0.5011(4)	0.8576(5)	0.0643(16)		
C6	0.5022(3)	0.4850(4)	0.7881(5)	0.0573(14)		
C7	0.7072(3)	0.5320(3)	0.7557(5)	0.0537(13)		
C8	0.7688(3)	0.5266(4)	0.6955(6)	0.0733(18)		
C9	0.8374(3)	0.5273(4)	0.7597(7)	0.081(2)		
C10	0.8458(4)	0.5326(4)	0.8834(7)	0.0723(18)		
C11	0.7863(4)	0.5380(4)	0.9426(6)	0.0718(17)		
C12	0.7164(3)	0.5371(3)	0.8770(5)	0.0626(15)		
C13	0.6133(3)	0.4337(3)	0.6102(4)	0.0460(11)		
C14	0.5891(3)	0.4185(3)	0.4889(5)	0.0502(12)		
C15	0.5903(3)	0.3503(3)	0.4435(5)	0.0510(13)		
C16	0.6178(3)	0.2951(3)	0.5186(5)	0.0458(11)		
C17	0.6437(3)	0.2931(3) 0.3070(3)	0.6382(4)	0.0459(11)		
C18	0.6381(3)	0.3760(3)	0.6819(4)	0.0463(12)		
C10	0.8457(3)	0.5700(3) 0.4457(3)	0.0019(1) 0.4410(5)	0.0503(12)		
C20	0.8751(3)	0.449(3) 0.5149(3)	0.4554(6)	0.0505(12) 0.0686(17)		
C20	0.8334(4)	0.5741(4)	0.4126(8)	0.0000(17)		
C21	0.0531(1) 0.7635(4)	0.5711(1) 0.5640(4)	0.3565(8)	0.087(2)		
C22	0.7033(4) 0.7343(4)	0.3040(4) 0.4951(4)	0.3405(6)	0.000(2)		
C23	0.7513(1) 0.7757(3)	0.4367(3)	0.3855(5)	0.0707(17) 0.0545(13)		
C24	0.9554(3)	0.3549(3)	0.3599(5)	0.0531(13)		
C25	1.0126(3)	0.3083(4)	0.3723(6)	0.0531(15) 0.0671(16)		
C20	1.0120(3) 1.0492(4)	0.3003(4) 0.2942(4)	0.3723(0) 0.2704(8)	0.0071(10)		
C27	1.0792(4) 1.0290(4)	0.2942(4) 0.3283(4)	0.1650(6)	0.003(2)		
C20	0.9733(4)	0.3203(4) 0.3757(5)	0.1532(6)	0.0737(17)		
C30	0.9735(1) 0.9346(4)	0.3902(4)	0.1552(0) 0.2505(5)	0.001(2)		
C31	0.9310(1) 0.8485(3)	0.3902(1) 0.2909(3)	0.2909(3) 0.4949(4)	0.0033(11) 0.0443(11)		
C32	0.0405(3) 0.8025(3)	0.2909(3) 0.2858(3)	0.4949(4) 0.5836(4)	0.0445(11)		
C33	0.0023(3) 0.7628(3)	0.2255(3) 0.2245(3)	0.5050(4) 0.6033(4)	0.0453(11)		
C34	0.7726(3)	0.2219(3) 0.1649(3)	0.5293(5)	0.0487(12)		
C35	0.8162(3)	0.1670(3)	0.3293(3) 0.4394(4)	0.0407(12) 0.0514(13)		
C36	0.8539(3)	0.1070(3)	0.4225(5)	0.0514(13) 0.0504(12)		
C11	0.0000(0)	0.68576(9)	0.4223(3) 0.35919(16)	0.0504(12) 0.0770(5)		
	1.03851(13)	0.00370(7) 0.40628(12)	0.84780(15)	0.0911(6)		
C12 F1	0.6582(2)	0.38673(18)	0.7997(3)	0.0511(0) 0.0629(8)		
F1 F2	0.0302(2) 0.61820(18)	0.30073(10) 0.22678(17)	0.757(3) 0.4764(3)	0.0027(0) 0.0567(7)		
F3	0.79638(17)	0.22070(17) 0.3/32/(16)	0.558(3)	0.0507(7)		
F 5 F 4	0.7364(2)	0.34324(10) 0.10/3/(16)	0.0550(3)	0.0340(7)		
14 N1	0.7304(2)	0.10434(10) 0.2504(2)	0.3300(3)	0.0022(0)		
INI NO	0.0099(3)	0.2304(3) 0.2125(2)	0.7220(4) 0.7040(4)	0.0320(11)		
184 D1	0.1220(3) 0.61864(7)	0.2123(2) 0.52660(9)	0.7040(4)	0.0300(10)		
r 1 D)	0.01004(7)	0.32009(8)	0.00404(12)	0.0464(3)		
r2 Cl9	0.90343(7)	0.3/093(8)	0.40/0/(11)	0.0401(3)		
C10 C29	0.1948(3)	0.2908(3)	0.9002(7)	0.129(3)		

Cl6	0.2489(5)	0.2287(4)	0.7536(7)	0.121(3)
Cl7	0.3454(3)	0.3178(6)	0.9216(9)	0.103(4)
Cl5	0.3278(5)	0.3333(5)	0.9070(9)	0.095(3)
Cl4	0.2156(7)	0.2700(6)	1.0377(10)	0.220(7)
Cl3	0.2546(5)	0.1994(4)	0.8205(10)	0.167(5)
C37	0.2867(5)	0.2521(4)	0.9489(7)	0.157(8)

		Table 3 Anis	otropic Displacer	nent Parameters	for Z-3	
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Au1	0.05442(14)	0.05611(15)	0.05254(14)	0.00253(9)	0.00496(10)	-0.00033(9)
Au2	0.05944(14)	0.06476(16)	0.03929(12)	0.00068(9)	-0.00087(9)	-0.01185(10)
C1	0.046(3)	0.059(3)	0.040(3)	-0.001(2)	0.005(2)	0.004(2)
C2	0.058(3)	0.065(4)	0.059(4)	-0.005(3)	0.007(3)	0.010(3)
C3	0.073(4)	0.075(4)	0.064(4)	-0.008(3)	0.007(3)	0.020(4)
C4	0.061(4)	0.099(5)	0.052(3)	0.002(3)	0.012(3)	0.024(4)
C5	0.052(3)	0.087(5)	0.053(3)	0.015(3)	0.003(3)	0.006(3)
C6	0.052(3)	0.070(4)	0.049(3)	-0.004(3)	0.002(2)	0.002(3)
C7	0.052(3)	0.052(3)	0.055(3)	-0.005(3)	0.000(2)	-0.001(2)
C8	0.059(4)	0.098(5)	0.061(4)	-0.017(4)	-0.002(3)	0.003(4)
С9	0.051(3)	0.094(5)	0.097(5)	-0.032(4)	0.004(3)	0.001(3)
C10	0.060(4)	0.062(4)	0.087(5)	-0.010(3)	-0.021(3)	-0.008(3)
C11	0.075(4)	0.078(5)	0.057(4)	0.002(3)	-0.010(3)	-0.011(4)
C12	0.060(3)	0.068(4)	0.059(3)	0.001(3)	0.004(3)	-0.009(3)
C13	0.040(3)	0.054(3)	0.044(3)	-0.001(2)	0.007(2)	0.000(2)
C14	0.046(3)	0.063(3)	0.041(3)	0.001(2)	0.002(2)	0.004(2)
C15	0.042(3)	0.072(4)	0.037(3)	-0.006(3)	-0.001(2)	-0.001(2)
C16	0.044(3)	0.051(3)	0.043(3)	-0.005(2)	0.011(2)	-0.008(2)
C17	0.047(3)	0.055(3)	0.037(2)	0.003(2)	0.012(2)	0.000(2)
C18	0.046(3)	0.060(3)	0.032(2)	0.000(2)	0.006(2)	-0.004(2)
C19	0.050(3)	0.059(3)	0.043(3)	0.003(2)	0.011(2)	-0.008(3)
C20	0.054(3)	0.059(4)	0.095(5)	0.010(3)	0.015(3)	-0.007(3)
C21	0.075(5)	0.061(4)	0.129(7)	0.014(4)	0.031(5)	-0.007(4)
C22	0.081(5)	0.083(5)	0.103(6)	0.035(5)	0.027(4)	0.020(4)
C23	0.067(4)	0.081(5)	0.063(4)	0.020(3)	0.002(3)	0.012(3)
C24	0.060(3)	0.055(3)	0.049(3)	-0.003(3)	0.007(2)	-0.001(3)
C25	0.047(3)	0.067(4)	0.047(3)	-0.004(3)	0.010(2)	-0.013(3)
C26	0.063(4)	0.069(4)	0.072(4)	0.007(3)	0.020(3)	0.001(3)
C27	0.072(4)	0.070(4)	0.120(7)	-0.013(4)	0.041(4)	0.001(4)
C28	0.084(5)	0.085(5)	0.064(4)	-0.010(4)	0.031(4)	-0.022(4)
C29	0.083(5)	0.113(6)	0.050(4)	0.004(4)	0.019(3)	-0.014(4)
C30	0.065(4)	0.091(5)	0.040(3)	0.005(3)	0.009(3)	-0.003(3)
C31	0.045(3)	0.051(3)	0.036(2)	0.001(2)	0.000(2)	-0.006(2)
C32	0.053(3)	0.049(3)	0.034(2)	0.003(2)	0.003(2)	0.001(2)
C33	0.051(3)	0.050(3)	0.035(2)	0.002(2)	0.006(2)	0.000(2)
C34	0.052(3)	0.049(3)	0.044(3)	0.002(2)	0.003(2)	-0.004(2)
C35	0.056(3)	0.053(3)	0.044(3)	-0.007(2)	0.004(2)	0.002(2)
C36	0.050(3)	0.061(3)	0.040(3)	-0.001(2)	0.006(2)	0.000(3)
Cl1	0.0938(12)	0.0665(10)	0.069(1)	0.0152(8)	0.0039(9)	-0.0052(9)
Cl2	0.1186(15)	0.0989(14)	0.0474(9)	-0.0014(8)	-0.0229(9)	-0.0193(11)
F1	0.078(2)	0.066(2)	0.0427(17)	-0.0033(14)	0.0004(15)	0.0028(16)
F2	0.0700(19)	0.0546(18)	0.0461(16)	-0.0064(14)	0.0098(14)	-0.0036(15)
F3	0.0681(19)	0.0532(18)	0.0428(15)	-0.0060(13)	0.0151(14)	-0.0103(15)

F4	0.073(2)	0.0494(18)	0.067(2)	0.0001(15)	0.0171(17)	-0.0069(15)
N1	0.070(3)	0.055(3)	0.036(2)	0.0009(19)	0.015(2)	-0.010(2)
N2	0.060(3)	0.049(2)	0.043(2)	0.0035(19)	0.013(2)	-0.001(2)
P1	0.0460(7)	0.0533(8)	0.0450(7)	-0.0031(6)	0.0021(5)	0.0018(6)
P2	0.0467(7)	0.0549(7)	0.0371(6)	0.0014(5)	0.0060(5)	-0.0050(6)
Cl8	0.079(3)	0.160(7)	0.152(6)	-0.075(6)	0.026(4)	-0.021(4)
C38	0.088(9)	0.117(13)	0.141(11)	-0.019(9)	0.034(8)	-0.011(8)
Cl6	0.130(6)	0.095(5)	0.147(6)	-0.034(4)	0.051(5)	-0.031(4)
Cl7	0.082(5)	0.099(5)	0.123(6)	0.033(4)	-0.003(4)	-0.003(4)
Cl5	0.093(4)	0.105(6)	0.088(4)	-0.012(5)	0.005(4)	0.000(5)
Cl4	0.224(13)	0.179(10)	0.268(14)	0.067(9)	0.067(11)	-0.022(9)
Cl3	0.142(7)	0.126(7)	0.208(9)	-0.092(7)	-0.079(7)	0.046(5)
C37	0.183(16)	0.130(13)	0.151(13)	-0.022(9)	-0.015(10)	-0.067(11)

Table 4 Bond Lengths for Z-3						
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
Au1	Cl1	2.2797(16)	C19	P2	1.805(6)	
Au1	P1	2.2278(14)	C20	C21	1.389(10)	
Au2	Cl2	2.2693(16)	C21	C22	1.376(11)	
Au2	P2	2.2230(13)	C22	C23	1.386(11)	
C1	C2	1.390(8)	C23	C24	1.382(9)	
C1	C6	1.385(8)	C25	C26	1.358(9)	
C1	P1	1.792(5)	C25	C30	1.395(8)	
C2	C3	1.368(9)	C25	P2	1.815(5)	
C3	C4	1.386(10)	C26	C27	1.416(10)	
C4	C5	1.369(10)	C27	C28	1.346(11)	
C5	C6	1.395(8)	C28	C29	1.345(11)	
C7	C8	1.394(8)	C29	C30	1.397(9)	
C7	C12	1.346(8)	C31	C32	1.384(7)	
C7	P1	1.817(5)	C31	C36	1.397(7)	
C8	С9	1.375(9)	C31	P2	1.824(5)	
C9	C10	1.374(10)	C32	C33	1.383(7)	
C10	C11	1.353(10)	C32	F3	1.346(6)	
C11	C12	1.404(8)	C33	C34	1.402(7)	
C13	C14	1.401(7)	C33	N2	1.435(6)	
C13	C18	1.378(7)	C34	C35	1.361(7)	
C13	P1	1.823(5)	C34	F4	1.341(6)	
C14	C15	1.361(8)	C35	C36	1.383(8)	
C15	C16	1.378(8)	N1	N2	1.238(6)	
C16	C17	1.378(7)	Cl8	C38	1.7710	
C16	F2	1.350(6)	C38	Cl6	1.7724	
C17	C18	1.376(7)	C38	Cl7	1.7743	
C17	N1	1.447(7)	Cl5	C37	1.7717	
C18	F1	1.337(6)	Cl4	C37	1.7695	
C19	C20	1.392(8)	Cl3	C37	1.7748	
C19	C24	1.372(8)				

Table 5 Bond Angles for Z-3							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P1	Au1	Cl1	177.12(6)	C26	C25	P2	119.2(5)
P2	Au2	Cl2	177.04(7)	C30	C25	P2	119.9(5)
C2	C1	P1	117.3(4)	C25	C26	C27	118.5(7)

C6	C1	C2	119.5(5)	C28	C27	C26	120.4(7)
C6	C1	P1	123.1(4)	C29	C28	C27	121.2(7)
C3	C2	C1	121.2(6)	C28	C29	C30	120.4(7)
C2	C3	C4	118.9(6)	C25	C30	C29	118.6(7)
C5	C4	C3	121.0(6)	C32	C31	C36	117.0(5)
C4	C5	C6	119.9(6)	C32	C31	P2	119.6(4)
C1	C6	C5	119.4(6)	C36	C31	P2	123.1(4)
C8	C7	P1	117.3(4)	C33	C32	C31	123.5(5)
C12	C7	C8	118.7(5)	F3	C32	C31	118.6(4)
C12	C7	P1	124.0(5)	F3	C32	C33	117.9(4)
С9	C8	C7	120.2(6)	C32	C33	C34	116.3(4)
C10	С9	C8	120.4(7)	C32	C33	N2	125.7(4)
C11	C10	С9	119.9(6)	C34	C33	N2	117.1(5)
C10	C11	C12	119.6(6)	C35	C34	C33	122.8(5)
C7	C12	C11	121.3(6)	F4	C34	C33	116.7(5)
C14	C13	P1	120.7(4)	F4	C34	C35	120.5(5)
C18	C13	C14	116.6(5)	C34	C35	C36	118.6(5)
C18	C13	P1	122.5(4)	C35	C36	C31	121.8(5)
C15	C14	C13	121.9(5)	N2	N1	C17	120.8(4)
C14	C15	C16	118.9(5)	N1	N2	C33	122.1(4)
C15	C16	C17	121.9(5)	C1	P1	Au1	109.30(18)
F2	C16	C15	120.0(4)	C1	P1	C7	107.0(3)
F2	C16	C17	118.1(5)	C1	P1	C13	108.2(2)
C16	C17	N1	124.0(5)	C7	P1	Au1	116.5(2)
C18	C17	C16	117.3(5)	C7	P1	C13	104.2(2)
C18	C17	N1	118.5(4)	C13	P1	Au1	111.34(17)
C17	C18	C13	123.2(5)	C19	P2	Au2	113.85(18)
F1	C18	C13	119.2(5)	C19	P2	C25	104.5(3)
F1	C18	C17	117.5(5)	C19	P2	C31	107.5(2)
C20	C19	P2	117.1(4)	C25	P2	Au2	115.38(18)
C24	C19	C20	119.7(5)	C25	P2	C31	104.6(2)
C24	C19	P2	123.0(4)	C31	P2	Au2	110.28(16)
C21	C20	C19	119.7(6)	Cl8	C38	Cl6	111.0
C22	C21	C20	119.8(7)	Cl8	C38	Cl7	111.2
C21	C22	C23	120.8(7)	Cl6	C38	Cl7	111.4
C24	C23	C22	119.0(6)	Cl5	C37	Cl3	111.4
C19	C24	C23	121.1(6)	Cl4	C37	Cl5	111.1
C26	C25	C30	120.8(6)	Cl4	C37	Cl3	111.0

Table 6 Atomic Occupancy for Z-3					
Atom	Occupancy	Atom	Occupancy		
C38	0.4	C37	0.4		
H38	0.4	H1	0.4		
Cl6	0.4	Cl3	0.4		
Cl7	0.4	Cl4	0.4		
Cl8	0.4	C15	0.4		

Figure SI7 : Ortep view of the complex (Color scheme: C, gray; N, blue; F, green; Au, brown; Cl, pale green; P, orange)

C₂₅H₁₇AuClF₄N₂OP (*M* =700.79 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 19.942(2) Å, *b* = 10.9697(7) Å, *c* = 24.135(2) Å, β = 112.700(11)°, *V* = 4870.6(8) Å³, *Z* = 8, *T* = 250 K, µ(MoK α) = 6.268 mm⁻¹, *Dcalc* = 1.911 g/cm³, 44413 reflections measured (6.666° ≤ 2 Θ ≤ 52.738°), 9919 unique (*R*_{int} = 0.0720, R_{sigma} = 0.0726) which were used in all calculations. The final *R*₁ was 0.0486 (I > 2 σ (I)) and *wR*₂ was 0.1371 (all data).

Table 1 Crystal data and structure refinement for E-6				
CCDC number	1484587			
Empirical formula	C ₂₅ H ₁₇ AuClF ₄ N ₂ OP			
Formula weight	700.79			
Temperature/K	250			
Crystal system	monoclinic			
Space group	$P2_1/n$			
a/Å	19.942(2)			
b/Å	10.9697(7)			
c/Å	24.135(2)			
a'\o	90			
β/°	112.700(11)			
$\gamma/^{\circ}$	90			
Volume/Å ³	4870.6(8)			
Z	8			
$\rho_{calc}g/cm^3$	1.911			
μ/mm ⁻¹	6.268			
F(000)	2688.0			
Crystal size/mm ³	0.23 imes 0.12 imes 0.11			
Radiation	MoK α ($\lambda = 0.71073$)			
20 range for data collection/°	6.666 to 52.738			
Index ranges	$-24 \le h \le 24, -13 \le k \le 12, -30 \le l \le 30$			
Reflections collected	44413			
Independent reflections	9919 [$R_{int} = 0.0720, R_{sigma} = 0.0726$]			
Data/restraints/parameters	9919/10/585			
Goodness-of-fit on F ²	1.040			
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0486, wR_2 = 0.1096$			
Final R indexes [all data]	$R_1 = 0.0895, wR_2 = 0.1371$			
Largest diff. peak/hole / e Å ⁻³	1.02/-1.23			

Table 2 I	Fractional Atomic Coor	dinates and Equivalent	Isotropic Displacement I	Parameters for <i>E</i> -6
Atom	x	У	Z	U(eq)
Au1	0.06879(2)	0.24009(3)	0.79035(2)	0.05406(13)
Cl1	0.00203(18)	0.0658(2)	0.76163(13)	0.0892(9)
P1	0.13434(13)	0.4093(2)	0.82145(10)	0.0512(5)
F1	0.2504(3)	0.2352(5)	0.8858(3)	0.0913(19)
F2	0.2840(4)	0.3388(7)	1.0845(3)	0.122(3)
F3	0.4044(6)	0.0679(8)	1.1394(5)	0.162(4)
F4	0.3851(4)	-0.0226(6)	0.9457(3)	0.108(2)
01	0.5454(5)	-0.2437(8)	1.1018(4)	0.103(3)
N1	0.3179(8)	0.1983(15)	1.0266(7)	0.062(2)
N2	0.3378(10)	0.1269(16)	0.9967(11)	0.062(2)
N3	0.3241(10)	0.1742(16)	0.9888(11)	0.062(2)
N4	0.3482(8)	0.1293(13)	1.0415(7)	0.062(2)
C1	0.1960(3)	0.4411(6)	0.7857(3)	0.056(2)
C6	0.1785(4)	0.3946(8)	0.7282(3)	0.129(6)
C5	0.2215(5)	0.4225(10)	0.6964(3)	0.142(6)
C4	0.2821(5)	0.4970(9)	0.7220(4)	0.099(4)
C3	0.2996(4)	0.5435(9)	0.7795(5)	0.170(9)
C2	0.2566(4)	0.5155(8)	0.8113(3)	0.132(6)
C7	0.0778(3)	0.5445(4)	0.8099(3)	0.050(2)
C8	0.0028(3)	0.5303(4)	0.7876(3)	0.064(2)
С9	-0.0420(2)	0.6320(6)	0.7769(3)	0.076(3)
C10	-0.0117(4)	0.7481(5)	0.7885(3)	0.073(3)
C11	0.0634(4)	0.7623(4)	0.8108(3)	0.082(3)
C12	0.1081(3)	0.6605(5)	0.8215(3)	0.072(3)
C13	0.1877(5)	0.4016(7)	0.9023(4)	0.053(2)
C14	0.2372(5)	0.3091(9)	0.9257(5)	0.066(3)
C15	0.2731(6)	0.2777(10)	0.9853(6)	0.085(3)
C16	0.2544(7)	0.3549(15)	1.0233(5)	0.103(5)
C17	0.2055(6)	0.4534(12)	1.0046(5)	0.083(3)
C18	0.1734(5)	0.4746(9)	0.9436(4)	0.062(2)
C19	0.3900(6)	0.0354(10)	1.0379(7)	0.088(3)
C20	0.4150(6)	-0.0420(10)	1.0061(5)	0.078(3)
C21	0.4632(5)	-0.1321(9)	1.0247(5)	0.068(3)
C22	0.4947(6)	-0.1512(10)	1.0860(6)	0.081(3)
C23	0.4733(7)	-0.0837(13)	1.1242(6)	0.096(4)
C24	0.4225(9)	0.0049(13)	1.0998(9)	0.115(5)
C25	0.5892(10)	-0.2614(18)	1.1649(7)	0.171(8)
Au2	0.44221(2)	0.37654(3)	0.39042(2)	0.04605(12)
Cl2	0.50957(12)	0.20410(19)	0.39845(10)	0.0604(6)
P2	0.37402(11)	0.53786(19)	0.39002(9)	0.0456(5)
F5	0.2716(3)	0.3488(5)	0.3941(3)	0.0811(16)
F6	0.2857(3)	0.4130(6)	0.5902(3)	0.100(2)
F7	0.1591(4)	0.1380(6)	0.5642(3)	0.122(3)
F8	0.1235(5)	0.1326(7)	0.3602(4)	0.132(3)
02	0.0135(4)	-0.1623(6)	0.4409(3)	0.0797(19)
N5	0.2350(8)	0.2833(13)	0.5035(6)	0.059(2)
N6	0.1904(9)	0.2427(15)	0.4542(7)	0.059(2)
N7	0.2205(10)	0.2736(15)	0.4630(7)	0.059(2)
N8	0.1965(8)	0.2379(12)	0.4985(6)	0.059(2)
C26	0.4247(2)	0.6798(4)	0.4108(2)	0.0442(18)
C31	0.4994(3)	0.6735(4)	0.4427(2)	0.052(2)
C30	0.5397(2)	0.7799(5)	0.4613(2)	0.060(2)
C29	0.5054(3)	0.8926(4)	0.4481(3)	0.058(2)
C28	0.4306(3)	0.8989(3)	0.4163(3)	0.068(3)
C27	0.3903(2)	0.7925(5)	0.3977(3)	0.059(2)
C32	0.2985(3)	0.5684(5)	0.3200(2)	0.052(2)
C33	0.2351(3)	0.6240(6)	0.3184(2)	0.066(3)

C34	0.1812(3)	0.6566(6)	0.2637(3)	0.084(3)
C35	0.1907(3)	0.6338(7)	0.2105(2)	0.096(4)
C36	0.2540(4)	0.5782(7)	0.2121(2)	0.094(4)
C37	0.3079(3)	0.5456(6)	0.2668(3)	0.070(3)
C38	0.3386(4)	0.5138(7)	0.4496(4)	0.0472(19)
C39	0.3629(4)	0.5788(8)	0.5018(4)	0.051(2)
C40	0.3455(5)	0.5448(8)	0.5496(4)	0.059(2)
C41	0.3023(5)	0.4481(9)	0.5433(4)	0.064(3)
C42	0.2721(5)	0.3791(8)	0.4912(5)	0.066(3)
C43	0.2932(5)	0.4160(8)	0.4455(4)	0.057(2)
C44	0.1471(6)	0.1433(10)	0.4643(7)	0.097(4)
C45	0.1297(6)	0.0859(11)	0.5093(6)	0.084(3)
C46	0.0877(6)	-0.0129(11)	0.5021(5)	0.079(3)
C47	0.0565(5)	-0.0641(9)	0.4464(5)	0.071(3)
C48	0.0687(6)	-0.0125(9)	0.3977(5)	0.080(3)
C49	0.1134(6)	0.0878(10)	0.4087(7)	0.090(4)
C50	-0.0207(7)	-0.2157(10)	0.3834(6)	0.101(4)

	Table 3 Anisotropic Displacement Parameters for E-6							
Atom	U11	U_{22}	U33	U23	U13	U12		
Au1	0.0651(3)	0.0421(2)	0.0558(2)	0.00004(15)	0.02437(19)	-0.00493(16)		
Cl1	0.121(2)	0.0546(15)	0.0912(19)	-0.0083(13)	0.0394(18)	-0.0293(16)		
P1	0.0565(14)	0.0433(12)	0.0543(13)	0.0015(10)	0.0219(11)	-0.0039(11)		
F1	0.087(4)	0.068(4)	0.100(5)	0.000(3)	0.016(4)	0.023(3)		
F2	0.113(5)	0.167(7)	0.057(4)	0.028(4)	0.001(4)	-0.053(5)		
F3	0.197(9)	0.140(7)	0.207(9)	-0.041(7)	0.142(8)	0.011(7)		
F4	0.094(5)	0.096(5)	0.116(6)	0.014(4)	0.020(4)	0.013(4)		
01	0.089(6)	0.128(7)	0.086(6)	0.018(5)	0.027(5)	0.021(5)		
N1	0.060(6)	0.063(8)	0.054(6)	0.019(7)	0.012(6)	0.027(5)		
N2	0.060(6)	0.063(8)	0.054(6)	0.019(7)	0.012(6)	0.027(5)		
N3	0.060(6)	0.063(8)	0.054(6)	0.019(7)	0.012(6)	0.027(5)		
N4	0.060(6)	0.063(8)	0.054(6)	0.019(7)	0.012(6)	0.027(5)		
C1	0.062(6)	0.045(5)	0.058(5)	0.010(4)	0.018(5)	-0.003(4)		
C6	0.126(11)	0.219(16)	0.059(7)	-0.030(8)	0.053(8)	-0.086(11)		
C5	0.115(11)	0.257(19)	0.066(8)	-0.011(10)	0.048(8)	-0.045(13)		
C4	0.087(9)	0.098(9)	0.129(11)	0.024(8)	0.063(8)	-0.004(7)		
C3	0.144(14)	0.24(2)	0.166(16)	-0.101(15)	0.102(13)	-0.119(15)		
C2	0.098(10)	0.190(15)	0.136(12)	-0.080(11)	0.079(9)	-0.067(10)		
C7	0.063(6)	0.042(5)	0.052(5)	0.002(4)	0.030(4)	-0.001(4)		
C8	0.062(6)	0.052(6)	0.075(6)	0.004(5)	0.024(5)	0.002(5)		
C9	0.066(7)	0.076(8)	0.084(7)	0.015(6)	0.026(6)	0.014(6)		
C10	0.094(8)	0.058(7)	0.070(7)	0.017(5)	0.037(6)	0.018(6)		
C11	0.092(9)	0.053(6)	0.098(8)	0.002(5)	0.032(7)	0.007(6)		
C12	0.065(6)	0.052(6)	0.098(8)	-0.003(5)	0.032(6)	-0.006(5)		
C13	0.053(5)	0.040(5)	0.060(5)	-0.001(4)	0.017(4)	-0.011(4)		
C14	0.057(6)	0.055(6)	0.076(7)	-0.004(5)	0.015(5)	-0.012(5)		
C15	0.070(7)	0.082(8)	0.077(8)	0.013(7)	0.000(7)	-0.025(6)		
C16	0.083(9)	0.136(12)	0.060(8)	0.044(8)	-0.007(7)	-0.062(9)		
C17	0.086(8)	0.112(9)	0.047(6)	-0.004(6)	0.023(6)	-0.031(7)		
C18	0.065(6)	0.064(6)	0.055(6)	0.002(5)	0.023(5)	-0.008(5)		
C19	0.082(8)	0.071(8)	0.120(11)	0.001(8)	0.050(8)	-0.001(6)		
C20	0.077(7)	0.072(7)	0.076(8)	0.003(6)	0.019(6)	-0.005(6)		
C21	0.064(6)	0.071(7)	0.071(7)	0.002(5)	0.027(6)	0.006(5)		
C22	0.076(7)	0.072(7)	0.093(9)	0.001(6)	0.029(7)	-0.008(6)		
C23	0.118(10)	0.105(9)	0.085(8)	-0.029(7)	0.063(8)	-0.020(9)		
C24	0.117(11)	0.078(9)	0.195(17)	-0.051(11)	0.109(13)	-0.027(8)		
C25	0.159(16)	0.24(2)	0.091(12)	0.038(12)	0.022(12)	0.038(14)		
Au2	0.0482(2)	0.0369(2)	0.0509(2)	-0.00624(14)	0.01665(16)	0.00190(14)		

010	0.0007(1.4)	0.0414(10)	0.0720(15)	0.0042(10)	0.021((12)	0.0112(11)
CI2	0.0695(14)	0.0414(12)	0.0739(15)	-0.0043(10)	0.0316(12)	0.0113(11)
P2	0.0461(12)	0.0403(12)	0.0476(12)	-0.0027(9)	0.0150(10)	0.0045(9)
F5	0.083(4)	0.064(3)	0.104(4)	-0.024(3)	0.045(3)	-0.029(3)
F6	0.097(5)	0.124(5)	0.102(5)	0.038(4)	0.065(4)	0.018(4)
F7	0.117(6)	0.105(5)	0.100(5)	-0.025(4)	-0.006(4)	-0.007(4)
F8	0.160(8)	0.106(6)	0.155(7)	-0.013(5)	0.088(6)	-0.056(5)
02	0.085(5)	0.074(5)	0.077(5)	0.004(4)	0.028(4)	-0.024(4)
N5	0.074(8)	0.051(6)	0.059(5)	-0.001(5)	0.033(7)	-0.021(5)
N6	0.074(8)	0.051(6)	0.059(5)	-0.001(5)	0.033(7)	-0.021(5)
N7	0.074(8)	0.051(6)	0.059(5)	-0.001(5)	0.033(7)	-0.021(5)
N8	0.074(8)	0.051(6)	0.059(5)	-0.001(5)	0.033(7)	-0.021(5)
C26	0.050(5)	0.038(5)	0.040(4)	-0.001(4)	0.014(4)	0.002(4)
C31	0.053(5)	0.038(5)	0.057(5)	0.006(4)	0.012(4)	-0.001(4)
C30	0.055(5)	0.052(5)	0.065(6)	-0.003(5)	0.013(5)	0.000(5)
C29	0.066(6)	0.046(5)	0.065(6)	-0.008(4)	0.030(5)	-0.020(5)
C28	0.072(7)	0.036(5)	0.092(7)	-0.002(5)	0.027(6)	0.005(5)
C27	0.046(5)	0.042(5)	0.079(6)	0.007(5)	0.014(5)	0.006(4)
C32	0.043(5)	0.048(5)	0.055(5)	-0.004(4)	0.006(4)	0.004(4)
C33	0.053(6)	0.060(6)	0.072(7)	-0.008(5)	0.011(5)	-0.002(5)
C34	0.050(6)	0.079(7)	0.085(8)	0.004(6)	-0.016(6)	0.008(5)
C35	0.081(9)	0.115(10)	0.051(7)	0.012(6)	-0.019(6)	-0.001(7)
C36	0.078(8)	0.141(11)	0.051(6)	0.012(7)	0.012(6)	0.019(8)
C37	0.065(6)	0.091(7)	0.049(6)	0.001(5)	0.016(5)	0.009(5)
C38	0.047(5)	0.040(5)	0.055(5)	-0.007(4)	0.020(4)	0.007(4)
C39	0.046(5)	0.053(5)	0.054(5)	-0.002(4)	0.018(4)	0.004(4)
C40	0.061(6)	0.060(6)	0.060(6)	0.001(4)	0.026(5)	0.010(5)
C41	0.065(6)	0.074(7)	0.071(7)	0.029(6)	0.045(6)	0.023(5)
C42	0.058(6)	0.055(6)	0.092(8)	0.019(6)	0.036(6)	0.008(5)
C43	0.055(5)	0.040(5)	0.069(6)	-0.010(4)	0.017(5)	0.002(4)
C44	0.054(7)	0.067(8)	0.141(12)	-0.033(8)	0.006(7)	0.006(6)
C45	0.073(8)	0.068(8)	0.083(8)	-0.019(7)	-0.002(7)	0.007(6)
C46	0.063(6)	0.085(8)	0.078(8)	-0.011(6)	0.015(6)	-0.010(6)
C47	0.061(6)	0.064(7)	0.088(8)	0.001(6)	0.028(6)	-0.007(5)
C48	0.069(7)	0.064(7)	0.098(8)	-0.008(6)	0.022(6)	-0.007(6)
C49	0.088(8)	0.051(6)	0.145(12)	0.002(7)	0.062(9)	-0.008(6)
C50	0.115(10)	0.068(7)	0.106(10)	0.007(7)	0.026(8)	-0.023(7)

Table 4 Bond Lengths for E-6							
Atom	Atom	Length/Å	Atom	Atom	Length/Å		
Au1	Cl1	2.280(3)	Au2	Cl2	2.285(2)		
Au1	P1	2.227(2)	Au2	P2	2.230(2)		
P1	C1	1.788(5)	P2	C26	1.818(4)		
P1	C7	1.818(5)	P2	C32	1.810(5)		
P1	C13	1.829(9)	P2	C38	1.850(8)		
F1	C14	1.360(11)	F5	C43	1.362(10)		
F2	C16	1.374(12)	F6	C41	1.352(9)		
F3	C24	1.339(14)	F7	C45	1.351(12)		
F4	C20	1.361(12)	F8	C49	1.354(14)		
01	C22	1.379(13)	02	C47	1.351(11)		
01	C25	1.447(16)	02	C50	1.415(13)		
N1	N2	1.23(3)	N5	N6	1.260(16)		
N1	C15	1.365(14)	N5	C42	1.382(13)		
N2	C19	1.509(14)	N6	C44	1.468(15)		
N3	N4	1.27(3)	N7	N8	1.198(15)		
N3	C15	1.505(15)	N7	C42	1.523(14)		
N4	C19	1.348(14)	N8	C44	1.450(14)		
C1	C6	1.3900	C26	C31	1.3900		
C1	C2	1.3900	C26	C27	1.3900		

C6	C5	1.3900	C31	C30	1.3900
C5	C4	1.3900	C30	C29	1.3900
C4	C3	1.3900	C29	C28	1.3900
C3	C2	1.3900	C28	C27	1.3900
C7	C8	1.3900	C32	C33	1.3900
C7	C12	1.3900	C32	C37	1.3900
C8	С9	1.3900	C33	C34	1.3900
С9	C10	1.3900	C34	C35	1.3900
C10	C11	1.3900	C35	C36	1.3900
C11	C12	1.3900	C36	C37	1.3900
C13	C14	1.376(13)	C38	C39	1.364(11)
C13	C18	1.392(12)	C38	C43	1.382(12)
C14	C15	1.381(14)	C39	C40	1.377(11)
C15	C16	1.402(18)	C40	C41	1.339(13)
C16	C17	1.408(18)	C41	C42	1.391(13)
C17	C18	1.378(13)	C42	C43	1.384(13)
C19	C20	1.362(15)	C44	C45	1.410(17)
C19	C24	1.42(2)	C44	C49	1.388(17)
C20	C21	1.330(14)	C45	C46	1.340(16)
C21	C22	1.383(15)	C46	C47	1.366(14)
C22	C23	1.372(15)	C47	C48	1.408(14)
C23	C24	1.363(19)	C48	C49	1.377(14)

Table 5 Bond Angles for E-6							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P1	Au1	Cl1	178.15(9)	P2	Au2	Cl2	174.41(8)
C1	P1	Au1	115.1(2)	C26	P2	Au2	113.94(19)
C1	P1	C7	105.5(3)	C26	P2	C38	104.2(3)
C1	P1	C13	107.4(4)	C32	P2	Au2	115.9(2)
C7	P1	Au1	112.3(2)	C32	P2	C26	105.8(3)
C7	P1	C13	105.8(4)	C32	P2	C38	108.8(3)
C13	P1	Au1	110.2(3)	C38	P2	Au2	107.4(2)
C22	01	C25	118.0(11)	C47	02	C50	118.3(8)
N2	N1	C15	104.3(15)	N6	N5	C42	107.9(13)
N1	N2	C19	109.5(18)	N5	N6	C44	110.6(13)
N4	N3	C15	109.5(17)	N8	N7	C42	108.4(13)
N3	N4	C19	103.7(15)	N7	N8	C44	101.4(13)
C6	C1	P1	117.1(4)	C31	C26	P2	118.2(3)
C6	C1	C2	120.0	C31	C26	C27	120.0
C2	C1	P1	122.8(4)	C27	C26	P2	121.7(3)
C1	C6	C5	120.0	C30	C31	C26	120.0
C6	C5	C4	120.0	C31	C30	C29	120.0
C3	C4	C5	120.0	C28	C29	C30	120.0
C4	C3	C2	120.0	C29	C28	C27	120.0
C3	C2	C1	120.0	C28	C27	C26	120.0
C8	C7	P1	118.6(3)	C33	C32	P2	121.8(3)
C8	C7	C12	120.0	C33	C32	C37	120.0
C12	C7	P1	121.4(3)	C37	C32	P2	117.9(3)
C9	C8	C7	120.0	C32	C33	C34	120.0
C8	C9	C10	120.0	C35	C34	C33	120.0
C11	C10	С9	120.0	C34	C35	C36	120.0
C12	C11	C10	120.0	C35	C36	C37	120.0
C11	C12	C7	120.0	C36	C37	C32	120.0
C14	C13	P1	120.1(7)	C39	C38	P2	122.5(6)
C14	C13	C18	116.3(9)	C39	C38	C43	117.5(8)
C18	C13	P1	122.8(7)	C43	C38	P2	119.4(6)
F1	C14	C13	116.9(9)	C38	C39	C40	121.1(8)
F1	C14	C15	115.2(10)	C41	C40	C39	118.7(9)

C13	C14	C15	127.8(10)	F6	C41	C42	116.3(9)
N1	C15	C14	148.2(14)	C40	C41	F6	119.1(10)
N1	C15	C16	99.9(13)	C40	C41	C42	124.6(8)
C14	C15	N3	108.3(13)	N5	C42	C41	107.4(10)
C14	C15	C16	111.7(10)	N5	C42	C43	138.3(11)
C16	C15	N3	139.9(14)	C41	C42	N7	143.1(10)
F2	C16	C15	120.9(14)	C43	C42	N7	103.1(10)
F2	C16	C17	113.7(15)	C43	C42	C41	113.8(8)
C15	C16	C17	125.4(10)	F5	C43	C38	117.0(8)
C18	C17	C16	116.8(11)	F5	C43	C42	118.7(8)
C17	C18	C13	121.9(10)	C38	C43	C42	124.2(8)
N4	C19	C20	151.9(14)	C45	C44	N6	142.6(12)
N4	C19	C24	98.9(13)	C45	C44	N8	101.3(12)
C20	C19	N2	110.7(14)	C49	C44	N6	105.2(13)
C20	C19	C24	109.2(10)	C49	C44	N8	146.5(14)
C24	C19	N2	140.2(15)	C49	C44	C45	112.2(10)
F4	C20	C19	113.7(11)	F7	C45	C44	115.1(12)
C21	C20	F4	116.0(11)	C46	C45	F7	118.7(13)
C21	C20	C19	130.3(11)	C46	C45	C44	126.2(11)
C20	C21	C22	116.4(10)	C45	C46	C47	118.9(11)
01	C22	C21	112.9(10)	02	C47	C46	117.1(10)
C23	C22	01	126.6(12)	02	C47	C48	123.1(10)
C23	C22	C21	120.5(12)	C46	C47	C48	119.8(10)
C24	C23	C22	117.7(13)	C49	C48	C47	117.9(11)
F3	C24	C19	119.4(15)	F8	C49	C44	119.9(11)
F3	C24	C23	114.8(17)	F8	C49	C48	115.1(12)
C23	C24	C19	125.8(11)	C48	C49	C44	124.9(12)

Figure SI8: Ortep view of the complex (Color scheme: C, gray; N, blue; F, green; Au, brown; Cl, pale green; P, orange)

C₂₅H₁₇AuClF₄N₂OP (*M* =700.79 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 16.0034(5) Å, *b* = 8.3754(2) Å, *c* = 19.2521(5) Å, *β* = 111.188(3)°, *V* = 2406.02(13) Å³, *Z* = 4, *T* = 200 K, μ (MoK α) = 6.345 mm⁻¹, *Dcalc* = 1.935 g/cm³, 25630 reflections measured (7.496° ≤ 2 Θ ≤ 60.118°), 6263 unique (*R*_{int} = 0.0393, R_{sigma} = 0.0405) which were used in all calculations. The final *R*₁ was 0.0258 (I > 2 σ (I)) and *wR*₂ was 0.0598 (all data).

Table 1 Crystal data and str	ructure refinement for Z-6
CCDC number	1484588
Empirical formula	$C_{25}H_{17}AuClF_4N_2OP$
Formula weight	700.79
Temperature/K	200
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	16.0034(5)
b/Å	8.3754(2)
c/Å	19.2521(5)
a/o	90
β/°	111.188(3)
$\gamma^{\prime o}$	90
Volume/Å ³	2406.02(13)
Z	4
$\rho_{calc}g/cm^3$	1.935
μ/mm ⁻¹	6.345
F(000)	1344.0
Crystal size/mm ³	0.28 imes 0.14 imes 0.12
Radiation	MoK α ($\lambda = 0.71075$)
2 Θ range for data collection/°	7.496 to 60.118
Index ranges	$-21 \le h \le 20, -10 \le k \le 11, -27 \le l \le 25$
Reflections collected	25630
Independent reflections	6263 [$R_{int} = 0.0393$, $R_{sigma} = 0.0405$]
Data/restraints/parameters	6263/0/317
Goodness-of-fit on F ²	1.058
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0258, wR_2 = 0.0566$
Final R indexes [all data]	$R_1 = 0.0389, wR_2 = 0.0598$
Largest diff. peak/hole / e Å ⁻³	1.41/-0.84

Table 2 Fr	actional Atomic Coordi	nates and Equivalent Is	otropic Displacement Pa	rameters Z-6
Atom	x	у	z	U(eq)
Au1	0.14051(2)	0.42917(2)	0.53278(2)	0.02940(5)
C1	0.1642(2)	0.0942(3)	0.44570(15)	0.0295(6)
C2	0.1205(3)	0.0246(4)	0.48879(19)	0.0431(8)
C3	0.0904(3)	-0.1313(5)	0.4760(2)	0.0571(10)
C4	0.1025(3)	-0.2179(4)	0.4198(2)	0.0547(9)
C5	0.1468(3)	-0.1519(4)	0.3773(2)	0.0506(9)
C6	0.1777(2)	0.0030(4)	0.38979(17)	0.0394(7)
C7	0.18573(18)	0.3828(3)	0.37181(14)	0.0255(5)
C8	0.0985(2)	0.4145(3)	0.32438(17)	0.0335(6)
С9	0.0830(2)	0.4822(4)	0.25529(17)	0.0416(7)
C10	0.1535(2)	0.5189(4)	0.23358(17)	0.0434(8)
C11	0.2397(2)	0.4880(5)	0.27956(17)	0.0492(9)
C12	0.2565(2)	0.4169(4)	0.34913(17)	0.0380(7)
C13	0.32360(18)	0.2845(3)	0.50970(13)	0.0269(6)
C14	0.3709(2)	0.1412(4)	0.52255(15)	0.0321(6)
C15	0.4633(2)	0.1375(4)	0.55902(16)	0.0370(7)
C16	0.5075(2)	0.2780(4)	0.58126(15)	0.0372(7)
C17	0.4641(2)	0.4246(3)	0.57288(16)	0.0315(6)
C18	0.3723(2)	0.4236(3)	0.53534(15)	0.0283(6)
C19	0.4448(2)	0.6366(4)	0.67290(16)	0.0356(7)
C20	0.4632(2)	0.5138(4)	0.72552(16)	0.0397(7)
C21	0.4172(3)	0.4937(4)	0.77219(17)	0.0449(8)
C22	0.3475(2)	0.5982(4)	0.76686(17)	0.0404(8)
C23	0.3264(2)	0.7217(4)	0.71539(17)	0.0405(7)
C24	0.3767(2)	0.7385(4)	0.67184(17)	0.0405(7)
C25	0.2298(3)	0.6686(5)	0.8091(2)	0.0514(9)
Cl1	0.08525(6)	0.55569(10)	0.61219(5)	0.0494(2)
F1	0.32914(12)	0.56428(18)	0.52115(10)	0.0358(4)
F2	0.59769(12)	0.2788(3)	0.61422(11)	0.0520(5)
F3	0.53214(15)	0.4156(2)	0.73122(11)	0.0546(6)
F4	0.35809(16)	0.8603(3)	0.62255(12)	0.0613(6)
N1	0.51491(18)	0.5723(3)	0.58927(15)	0.0397(6)
N2	0.50042(19)	0.6731(3)	0.63133(15)	0.0433(7)
01	0.30316(19)	0.5680(3)	0.81350(14)	0.0515(6)
P1	0.20218(5)	0.29764(9)	0.46283(3)	0.02505(14)

	Table 3 Anisotropic Displacement Parameters for Z-6.								
Atom	U 11	U_{22}	U33	U23	U13	U_{12}			
Au1	0.03056(7)	0.03458(7)	0.02486(6)	-0.00283(4)	0.01218(5)	0.00008(5)			
C1	0.0299(15)	0.0301(15)	0.0272(13)	0.0003(11)	0.0090(12)	-0.0002(12)			
C2	0.056(2)	0.0377(17)	0.0447(18)	0.0012(15)	0.0291(17)	-0.0026(16)			
C3	0.075(3)	0.0372(18)	0.072(3)	0.0076(19)	0.043(2)	-0.008(2)			
C4	0.070(3)	0.0311(16)	0.064(2)	-0.0028(17)	0.026(2)	-0.0054(18)			
C5	0.067(2)	0.0330(17)	0.0491(19)	-0.0087(16)	0.0176(18)	-0.0022(18)			
C6	0.0475(19)	0.0395(17)	0.0330(15)	-0.0048(14)	0.0166(14)	-0.0030(16)			
C7	0.0271(14)	0.0251(13)	0.0222(12)	-0.0022(11)	0.0062(11)	-0.0009(11)			
C8	0.0313(15)	0.0378(17)	0.0319(14)	-0.0024(12)	0.0122(12)	-0.0020(13)			
C9	0.0409(18)	0.0457(18)	0.0279(15)	0.0009(14)	0.0001(13)	0.0060(16)			
C10	0.054(2)	0.0476(19)	0.0240(14)	0.0047(14)	0.0081(14)	-0.0049(17)			
C11	0.0421(19)	0.078(3)	0.0300(15)	0.0047(17)	0.0162(14)	-0.0143(19)			
C12	0.0288(15)	0.060(2)	0.0238(13)	0.0046(13)	0.0076(12)	-0.0021(14)			
C13	0.0294(14)	0.0337(14)	0.0170(11)	0.0014(11)	0.0078(10)	0.0026(12)			
C14	0.0377(16)	0.0348(15)	0.0233(13)	-0.0003(12)	0.0102(12)	0.0014(14)			
C15	0.0387(17)	0.0412(17)	0.0279(14)	0.0026(14)	0.0080(12)	0.0115(15)			

C160.0287(14)0.0561(19)0.0246(13)0.0023(14)0.0070(12)0.0025(15)C170.0295(15)0.0429(17)0.0229(13)-0.0007(12)0.0105(11)-0.0035(13)C180.0289(14)0.0356(16)0.0204(12)0.0007(11)0.0090(11)0.0011(12)C190.0411(17)0.0338(16)0.0287(14)-0.0061(13)0.0090(13)-0.0108(14)C200.0425(18)0.0439(18)0.0275(15)-0.0044(14)0.0065(13)0.0003(16)C210.061(2)0.0439(18)0.0282(15)0.0047(15)0.0143(15)-0.0014(18)C220.051(2)0.0411(18)0.0306(15)-0.0013(13)0.0158(14)-0.0069(15)C230.0499(19)0.0343(16)0.0395(16)-0.0009(14)0.0188(15)-0.0012(15)C240.052(2)0.0275(16)0.0397(16)0.0025(13)0.0133(15)-0.0081(14)C250.061(2)0.0634(6)0.0442(4)-0.0103(16)0.0237(17)-0.0037(19)C110.0498(5)0.0634(6)0.0442(4)-0.0113(7)0.0059(7)-0.0009(7)F20.0256(9)0.0691(13)0.0540(11)0.0014(9)0.0110(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)							
C170.0295(15)0.0429(17)0.0229(13)-0.0007(12)0.0105(11)-0.0035(13)C180.0289(14)0.0356(16)0.0204(12)0.0007(11)0.0090(11)0.0011(12)C190.0411(17)0.0338(16)0.0287(14)-0.0061(13)0.0090(13)-0.0108(14)C200.0425(18)0.0439(18)0.0275(15)-0.0044(14)0.0065(13)0.0003(16)C210.061(2)0.0439(18)0.0282(15)0.0047(15)0.0143(15)-0.0014(18)C220.051(2)0.0411(18)0.0306(15)-0.0013(13)0.0158(14)-0.0069(15)C230.0499(19)0.0343(16)0.0395(16)-0.0009(14)0.0188(15)-0.0012(15)C240.052(2)0.0275(16)0.0397(16)0.0025(13)0.0133(15)-0.0081(14)C250.061(2)0.056(2)0.0422(18)-0.0103(16)0.0237(17)-0.0037(19)C110.0498(5)0.0634(6)0.0442(4)-0.0156(4)0.0280(4)-0.0007(4)F10.0353(9)0.0303(9)0.0358(9)-0.0013(7)0.0059(7)-0.0009(7)F20.0256(9)0.0691(13)0.0540(11)0.0015(10)0.0055(8)0.0054(9)F30.0551(13)0.0692(15)0.0344(10)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)	C16	0.0287(14)	0.0561(19)	0.0246(13)	0.0023(14)	0.0070(12)	0.0025(15)
C180.0289(14)0.0356(16)0.0204(12)0.0007(11)0.0090(11)0.0011(12)C190.0411(17)0.0338(16)0.0287(14)-0.0061(13)0.0090(13)-0.0108(14)C200.0425(18)0.0439(18)0.0275(15)-0.0044(14)0.0065(13)0.0003(16)C210.061(2)0.0439(18)0.0282(15)0.0047(15)0.0143(15)-0.0014(18)C220.051(2)0.0411(18)0.0306(15)-0.0013(13)0.0158(14)-0.0069(15)C230.0499(19)0.0343(16)0.0395(16)-0.0009(14)0.0138(15)-0.0012(15)C240.052(2)0.0275(16)0.0397(16)0.0025(13)0.0133(15)-0.0081(14)C250.061(2)0.056(2)0.0422(18)-0.0103(16)0.0237(17)-0.0037(19)C110.0498(5)0.0634(6)0.0442(4)-0.0156(4)0.0280(4)-0.0009(7)F20.0256(9)0.0691(13)0.0540(11)0.0015(10)0.0055(8)0.0054(9)F30.0551(13)0.0692(15)0.0344(10)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)	C17	0.0295(15)	0.0429(17)	0.0229(13)	-0.0007(12)	0.0105(11)	-0.0035(13)
C190.0411(17)0.0338(16)0.0287(14)-0.0061(13)0.0090(13)-0.0108(14)C200.0425(18)0.0439(18)0.0275(15)-0.0044(14)0.0065(13)0.0003(16)C210.061(2)0.0439(18)0.0282(15)0.0047(15)0.0143(15)-0.0014(18)C220.051(2)0.0411(18)0.0306(15)-0.0013(13)0.0158(14)-0.0069(15)C230.0499(19)0.0343(16)0.0395(16)-0.0009(14)0.0188(15)-0.0012(15)C240.052(2)0.0275(16)0.0397(16)0.0025(13)0.0133(15)-0.0081(14)C250.061(2)0.056(2)0.0422(18)-0.0103(16)0.0237(17)-0.0037(19)C110.0498(5)0.0634(6)0.0442(4)-0.0156(4)0.0280(4)-0.0007(4)F10.0353(9)0.0303(9)0.0358(9)-0.0013(7)0.0059(7)-0.0009(7)F20.0256(9)0.0691(13)0.0540(11)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)	C18	0.0289(14)	0.0356(16)	0.0204(12)	0.0007(11)	0.0090(11)	0.0011(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.0411(17)	0.0338(16)	0.0287(14)	-0.0061(13)	0.0090(13)	-0.0108(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	0.0425(18)	0.0439(18)	0.0275(15)	-0.0044(14)	0.0065(13)	0.0003(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.061(2)	0.0439(18)	0.0282(15)	0.0047(15)	0.0143(15)	-0.0014(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.051(2)	0.0411(18)	0.0306(15)	-0.0013(13)	0.0158(14)	-0.0069(15)
C240.052(2)0.0275(16)0.0397(16)0.0025(13)0.0133(15)-0.0081(14)C250.061(2)0.056(2)0.0422(18)-0.0103(16)0.0237(17)-0.0037(19)C110.0498(5)0.0634(6)0.0442(4)-0.0156(4)0.0280(4)-0.0007(4)F10.0353(9)0.0303(9)0.0358(9)-0.0013(7)0.0059(7)-0.0009(7)F20.0256(9)0.0691(13)0.0540(11)0.0015(10)0.0055(8)0.0054(9)F30.0551(13)0.0692(15)0.0344(10)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)	C23	0.0499(19)	0.0343(16)	0.0395(16)	-0.0009(14)	0.0188(15)	-0.0012(15)
C25 0.061(2) 0.056(2) 0.0422(18) -0.0103(16) 0.0237(17) -0.0037(19) Cl1 0.0498(5) 0.0634(6) 0.0442(4) -0.0156(4) 0.0280(4) -0.0007(4) F1 0.0353(9) 0.0303(9) 0.0358(9) -0.0013(7) 0.0059(7) -0.0009(7) F2 0.0256(9) 0.0691(13) 0.0540(11) 0.0015(10) 0.0055(8) 0.0054(9) F3 0.0551(13) 0.0692(15) 0.0344(10) 0.0044(9) 0.0101(9) 0.0192(10) F4 0.0866(17) 0.0414(11) 0.0702(14) 0.0199(11) 0.0454(13) 0.0084(12)	C24	0.052(2)	0.0275(16)	0.0397(16)	0.0025(13)	0.0133(15)	-0.0081(14)
Cl10.0498(5)0.0634(6)0.0442(4)-0.0156(4)0.0280(4)-0.0007(4)F10.0353(9)0.0303(9)0.0358(9)-0.0013(7)0.0059(7)-0.0009(7)F20.0256(9)0.0691(13)0.0540(11)0.0015(10)0.0055(8)0.0054(9)F30.0551(13)0.0692(15)0.0344(10)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)	C25	0.061(2)	0.056(2)	0.0422(18)	-0.0103(16)	0.0237(17)	-0.0037(19)
F10.0353(9)0.0303(9)0.0358(9)-0.0013(7)0.0059(7)-0.0009(7)F20.0256(9)0.0691(13)0.0540(11)0.0015(10)0.0055(8)0.0054(9)F30.0551(13)0.0692(15)0.0344(10)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)	Cl1	0.0498(5)	0.0634(6)	0.0442(4)	-0.0156(4)	0.0280(4)	-0.0007(4)
F20.0256(9)0.0691(13)0.0540(11)0.0015(10)0.0055(8)0.0054(9)F30.0551(13)0.0692(15)0.0344(10)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)	F1	0.0353(9)	0.0303(9)	0.0358(9)	-0.0013(7)	0.0059(7)	-0.0009(7)
F30.0551(13)0.0692(15)0.0344(10)0.0044(9)0.0101(9)0.0192(10)F40.0866(17)0.0414(11)0.0702(14)0.0199(11)0.0454(13)0.0084(12)60.0201(11)0.04201(11)0.0201(11)0.0454(13)0.0084(12)	F2	0.0256(9)	0.0691(13)	0.0540(11)	0.0015(10)	0.0055(8)	0.0054(9)
F4 0.0866(17) 0.0414(11) 0.0702(14) 0.0199(11) 0.0454(13) 0.0084(12)	F3	0.0551(13)	0.0692(15)	0.0344(10)	0.0044(9)	0.0101(9)	0.0192(10)
	F4	0.0866(17)	0.0414(11)	0.0702(14)	0.0199(11)	0.0454(13)	0.0084(12)
N1 $0.0295(13)$ $0.0497(17)$ $0.0373(14)$ $-0.0018(12)$ $0.0088(11)$ $-0.0118(12)$	N1	0.0295(13)	0.0497(17)	0.0373(14)	-0.0018(12)	0.0088(11)	-0.0118(12)
N2 0.0426(15) 0.0495(17) 0.0359(13) -0.0040(13) 0.0118(12) -0.0116(13)	N2	0.0426(15)	0.0495(17)	0.0359(13)	-0.0040(13)	0.0118(12)	-0.0116(13)
O1 0.0655(17) 0.0552(16) 0.0425(13) 0.0058(11) 0.0299(13) 0.0017(12)	01	0.0655(17)	0.0552(16)	0.0425(13)	0.0058(11)	0.0299(13)	0.0017(12)
P1 0.0261(3) 0.0288(3) 0.0203(3) -0.0008(3) 0.0084(3) -0.0013(3)	P1	0.0261(3)	0.0288(3)	0.0203(3)	-0.0008(3)	0.0084(3)	-0.0013(3)

		Table 4 Bond	Lengths for Z-6		
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Au1	Cl1	2.2845(8)	C14	C15	1.389(4)
Au1	P1	2.2276(7)	C15	C16	1.361(5)
C1	C2	1.392(4)	C16	C17	1.391(4)
C1	C6	1.399(4)	C16	F2	1.350(3)
C1	P1	1.799(3)	C17	C18	1.383(4)
C2	C3	1.382(5)	C17	N1	1.451(4)
C3	C4	1.371(6)	C18	F1	1.343(3)
C4	C5	1.379(5)	C19	C20	1.398(5)
C5	C6	1.378(5)	C19	C24	1.380(5)
C7	C8	1.390(4)	C19	N2	1.428(4)
C7	C12	1.382(4)	C20	C21	1.363(5)
C7	P1	1.821(3)	C20	F3	1.348(4)
C8	С9	1.383(4)	C21	C22	1.391(5)
С9	C10	1.373(5)	C22	C23	1.387(4)
C10	C11	1.367(5)	C22	01	1.355(4)
C11	C12	1.400(4)	C23	C24	1.363(5)
C13	C14	1.393(4)	C24	F4	1.351(4)
C13	C18	1.389(4)	C25	01	1.423(4)
C13	P1	1.826(3)	N1	N2	1.248(4)

Table 5 Bond Angles for Z-6							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P1	Au1	Cl1	175.70(3)	C18	C17	N1	121.6(3)
C2	C1	C6	118.7(3)	C17	C18	C13	123.0(3)
C2	C1	P1	119.8(2)	F1	C18	C13	118.8(3)
C6	C1	P1	121.5(2)	F1	C18	C17	118.2(2)
C3	C2	C1	120.4(3)	C20	C19	N2	123.6(3)
C4	C3	C2	120.1(3)	C24	C19	C20	115.1(3)
C3	C4	C5	120.4(3)	C24	C19	N2	120.5(3)
C6	C5	C4	120.1(3)	C21	C20	C19	123.1(3)
C5	C6	C1	120.2(3)	F3	C20	C19	117.4(3)
C8	C7	P1	118.0(2)	F3	C20	C21	119.5(3)
C12	C7	C8	119.7(3)	C20	C21	C22	118.9(3)

C12	C7	P1	122.3(2)	C23	C22	C21	120.2(3)
С9	C8	C7	119.9(3)	01	C22	C21	115.6(3)
C10	С9	C8	120.2(3)	01	C22	C23	124.2(3)
C11	C10	С9	120.5(3)	C24	C23	C22	118.1(3)
C10	C11	C12	120.0(3)	C23	C24	C19	124.5(3)
C7	C12	C11	119.6(3)	F4	C24	C19	116.7(3)
C14	C13	P1	123.6(2)	F4	C24	C23	118.8(3)
C18	C13	C14	117.4(3)	N2	N1	C17	119.8(3)
C18	C13	P1	119.1(2)	N1	N2	C19	121.2(3)
C15	C14	C13	121.3(3)	C22	01	C25	118.0(3)
C16	C15	C14	118.6(3)	C1	P1	Au1	112.66(10)
C15	C16	C17	123.0(3)	C1	P1	C7	105.84(13)
F2	C16	C15	119.9(3)	C1	P1	C13	105.19(13)
F2	C16	C17	117.0(3)	C7	P1	Au1	116.52(9)
C16	C17	N1	120.7(3)	C7	P1	C13	104.90(12)
C18	C17	C16	116.5(3)	C13	P1	Au1	110.84(8)