Supporting Information

Greatly enhanced photocatalytic activity by organic flexible

piezoelectrics PVDF induced spatial electric field

Baoying Dai^{a,b,c}, Hengming Huang^{a,b,c}, Wei Wang^d, Yukai Chen^{a,b,c}, Chunhua Lu^{a,b,c*},

Jiahui Kou^{a,b,c}*, Lianzhou Wang^e, Fulei Wang^f and Zhongzi Xu^{a,b,c}

^a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.

^b Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P. R. China.

^c Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P. R. China.

^d School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China.

^e Nanomaterials Center, School of Chemical Engineering and Australia Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia

^f State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China

Corresponding authors:

* E-mail: chhlu@njtech.edu.cn (C. L.), Tel: +86-25-83587252.

* E-mail: jhkou@njtech.edu.cn (J. K.).

Supplementary text

1 Materials

Tantalum (**V**) oxide (Ta₂O₅, 99.99%, Aladdin) and sodium hydroxide (NaOH, 96%, Xilong Chemical Co., Ltd) were selected to prepare sodium tantalate (NaTaO₃) powders. Nitric acid (HNO₃, 65.0~68.0%, Shanghai Lingfeng Chemical Reagent CO., Ltd.), bismuth (**II**) nitrate pentahydrate (Bi(NO₃)₃·5H₂O, \geq 99.0%, Sinopharm Chemical Reagent Co., Ltd), ammonium metavanadate (NH₄VO₃, \geq 99.0%, Sinopharm Chemical Reagent Co., Ltd) and ammonia solution (NH₃·H₂O, 25~28%, Shanghai Lingfeng Chemical Reagent CO., Ltd.) were used to synthesize bismuth vanadate (BiVO₄) sample. Urea (CON₂H₄, 99%, Xilong Chemical Co., Ltd) was utilized to fabricate graphitic carbon nitride (g-C₃N₄).

2 Methods

2.1 Preparation of NaTaO₃, BiVO₄ and g-C₃N₄.

As we know, NaTaO₃, as a representative UV-light-responsive catalyst, exhibiting significant negative conduction band and great photocatalytic stability, has attracted a great deal of attention during the decades.^{1, 2} BiVO₄ is famous for its application in water splitting and organic pollution degradation under visible light irradiation, which is ascribed to its relatively narrow bandgap and high catalytic efficiency.³⁻⁶ Polymeric-based g-C₃N₄ is a new efficient visible-light-responsive photocatalyst. It has become a very hot research topic since the pioneering work in 2009.⁷⁻⁹ Therefore, to investigate the generic enhancement effect of spatial electric field of PVDF on photocatalysis, it is representative and imperative to prepare the abovementioned three photocatalysts and combine them with PVDF, respectively.

NaTaO₃: NaTaO₃ was synthesized via a typical hydrothermal method.¹⁰ 8.00 g

NaOH powders were dissolved in 20 mL of distilled water, and then 0.25 g of Ta_2O_5 powders were added. The obtained mixture was poured into a homemade polytetrafluoroethylene (PPL) lined stainless steel reactor with the capacity of 40 mL. After heated at 120 °C for 48 h, the product was centrifuged, washed with distilled water, and then dried at 60 °C in an oven overnight.

BiVO₄: Hydrothermal procedure was adopted to prepare BiVO₄ sample.¹¹ 4.21 g of NH₄VO₃ and 17.46 g of Bi(NO₃)₃·5H₂O powders were dissolved in 220 mL and 80 mL 2 M HNO₃ solution, respectively. Then Bi(NO₃)₃·5H₂O solution was drop-added into NH₄VO₄ solution under continuous stirring. Subsequently, 1 M NH₃·H₂O was added to adjust pH value of the reaction mixture to 2 with vigorous stirring and vivid yellow precipitates were formed simultaneously. 70 mL of reaction product was taken out from the obtained precipitates after 6 h's standing and transferred into a 100 mL PPL lined stainless steel autoclave, the reaction was conducted at 200 °C for 24 h. Finally, the product was centrifuged, washed with distilled water and ethanol for several times and dried at 60 °C overnight.

g-C₃N₄: g-C₃N₄ was fabricated by directly heating urea in a muffle furnace.^{12, 13} In detail, 20.00 g of precursor urea powders were put into a 100 mL alumina crucible with a cover after ground with a mortar. Then the alumina crucible was moved in a muffle furnace and heated at 520 °C for 4 h in air with the ramp rate of 25 °C/min. Finally, the obtained powders were ground before characterization and utilization.

2.2 Fabrication of photocatalytic films.

For comparison, the as-prepared photocatalysts were combined with PDMS and PVDF, respectively. The fabrication procedures of PVDF-NaTaO₃, PVDF-BiVO₄ and PVDF-g-C₃N₄ were similar to that of PVDF-TiO₂ except the content of NaTaO₃, BiVO₄ and g-C₃N₄ powders contained in the film is 0.50 g, respectively. Similarly, 0.50 g of photocatalysts NaTaO₃, BiVO₄ and g-C₃N₄ were combined with PDMS by the same preparation process as that of PDMS-TiO₂ to prepare PDMS-NaTaO₃, PDMS-BiVO₄ and PDMS-g-C₃N₄ films, respectively.

2.3 Photocatalytic performance measurement

To investigate the generic promotion effect of spatial electric field on photocatalysis, the photodegradation experiments of RhB over the prepared films were also conducted in a similar way as that of PVDF-TiO₂ and PDMS-TiO₂. During the photocatalytic reaction, a 300 W xenon lamp was employed as light source for PVDF-BiVO₄, PDMS-BiVO₄, PVDF-g-C₃N₄ and PDMS-g-C₃N₄ films, and the lamp equipped with a 420 nm cutoff filter was utilized to irradiate PVDF-NaTaO₃ and PDMS- NaTaO₃ films.

3 Results and discussion

3.1 Piezoelectric force microscope (PFM) of PVDF and PVDF-TiO₂ films

Fig. S1 Piezoelectric hysteresis and butterfly loops of films: pure PVDF (a, b) and PVDT-TiO₂ (c, d).

PFM is an effective technique to characterize piezoelectric property. Therefore, the piezoelectric hysteresis and butterfly loops of PVDF and PVDF-TiO₂ films were carried out using a Bruker Dimension Icon Scanning Probe Microscope with a Pt-coated conductive tip to study the influence of TiO_2 on the piezoelectric property of PVDF substrate. As Fig. S1 (a) and (b) displays, no typical square phase hysteresis loop and butterfly loop over PVDF are detected. It indicates that the piezoelectric

property of pure PVDF film is poor. After combined with TiO_2 , the slight square phase hysteresis and butterfly loop of PVDF- TiO_2 are attained, shown in Fig. S1 (c) and (d). It demonstrates that the piezoelectric property of PVDF is improved in the presence of TiO_2 nano particles.

3.2 Hydroxyl radical generation analysis

Fig. S2 Hydroxyl radical generation ability analysis spectra of TA in NaOH solution excited at 315 nm in the condition of U-L (over PVDF-TiO₂ (a) and PDMS-TiO₂ (b)) and S-L (over PVDF-TiO₂ (c) and PDMS-TiO₂ (d)), respectively.

As we know, hydroxyl radicals are the oxidation product of photogenerated holes and absorbed water, which can be trapped by terephthalic acid (TA) and produce 2hydroxyterephthalic acid, a high fluorescence compound. Therefore, the PL intensity of 2-hydroxyterephthalic acid could be employed as a probe to detect the generation of hydroxyl radicals and effective photogenerated holes, the higher PL intensity indicates more effective photogenerated holes introduced into reaction system. In this work, significant PL spectra excited at 315 nm in NaOH solution of TA were observed and depicted in Fig. S2. The peaks centered at ca. 425 nm increase with reaction time. As displayed in Fig. S2 (a) and (b), the PL intensity of 2hydroxyterephthalic acid over PVDF-TiO₂ and PDMS-TiO₂ with the assistance of S-L in 4 h is 160000 and 220000, respectively. The similar PL intensity over PVDF-TiO₂ and PDMS-TiO₂ suggests that there is no big difference on the amounts of effective photogenerated holes of TiO₂ over PVDF-TiO₂ and PDMS-TiO₂ films, implying the similar photocatalytic efficiency of the films. The result is in good agreement with the catalytic degradation of RhB over two films under S-L. Moreover, the PL intensity at 425 nm over PVDF-TiO₂ in 4 h is up to 1800000, which is 1.5 times higher than that over PDMS-TiO₂ 1200000 under U-L (Fig. S2 (c) and (d)). It verifies that the amounts of effective photogenerated holes of PVDF-TiO₂ are much more than that of PDMS-TiO₂ in the condition of U-L, indicating more superior photocatalytic activity of PVDF-TiO₂ than PDMS-TiO₂. This result is in great accordance with the photocatalytic efficiency of the above two films under U-L.

3.3 Crystal structure

Fig. S3 XRD patterns of the as-synthesized samples: orthorhombic $NaTaO_3$ (a), monoclinic sheelite $BiVO_4$ (b) and $g-C_3N_4$ (c).

Fig. S3 displays the XRD patterns of the synthesized NaTaO₃, BiVO₄ and g-C₃N₄ powders. The peaks of NaTaO₃ can be well indexed with previously reported cell parameters of orthorhombic NaTaO₃,^{10, 14} shown in Fig. S3 (a), indicating that the purity NaTaO₃ sample is synthesized by hydrothermal method with Ta₂O₅ and NaOH as starting materials. As Fig. S3 (b) depicts, BiVO₄ prepared without directing agent is in the form of monoclinic scheelite with the characteristic diffraction peaks at 15.1°, 18.9°, 28.9° and 30.5°.¹⁵ It suggests that the monoclinic scheelite structure of BiVO₄ is well preserved in the fabricated sample. Two distinct diffraction peaks of g-C₃N₄ are shown at around 27.4° and 13.1° (Fig. S3 (c)), corresponding to the characterization

interplannar staking peak of aromatic systems and the inter-layer structural packing, respectively.¹⁶

3.4 Morphology characterization

Fig. S4 describes the typical morphologies of the prepared samples NaTaO₃, BiVO₄ and g-C₃N₄. NaTaO₃ is cubic particle with the size less than 200 nm, as Fig. S4 (a) displays. The BiVO₄ sample exhibits leaf shape with the thickness of about 300 nm (Fig. S4 (b)). Fig. S4 (c) illustrates the SEM image of the bulk g-C₃N₄, indicating that the obtained g-C₃N₄ sample is solid agglomerate about several micrometers in size.

Fig. S4 SEM images of the as-prepared orthorhombic $NaTaO_3$ (a), monoclinic sheelite $BiVO_4$ (b) and $g-C_3N_4$ (c).

3.5 Optical property

Fig. S5 UV-via absorption spectra of the fabricated powders and films: NaTaO₃ powders, PDMS-NaTaO₃ and PVDF-NaTaO₃ films (a), BiVO₄ powders, PDMS-BiVO₄ and PVDF-BiVO₄ films (b), $g-C_3N_4$ powders, PDMS- $g-C_3N_4$ and PVDF- $g-C_3N_4$ films (c).

As depicted in Fig. S5 (a), (b) and (c), the optical absorptions of NaTaO₃, BiVO₄ and g-C₃N₄ start at about 320 nm, 530 nm and 450 nm, respectively. The photocatalytic films, PDMS-NaTaO₃, PVDF-NaTaO₃, PDMS-BiVO₄, PVDF-BiVO₄, PDMS-g-C₃N₄ and PVDF-g-C₃N₄, possess the same absorption edge as that of the corresponding photocatalyst powders, respectively. Therefore, it allows the prepared photocatalytic films to utilize enough UV light or visible light during the photocatalytic process. The results indicate that the existence of organic substrate PDMS or PVDF does not play a negative role in the light absorption of photocatalyst.

3.6 Generic promotion effect of spatial electric field of PVDF on photocatalysis

Fig. S6 The photocatalytic degradation curves of RhB (12 mg/L, 100 mL) over PDMS-NaTaO₃ film and PVDF-NaTaO₃ film under S-L, U-L and U-NL, respectively (a), variations of $ln(C_0/C)$ versus light irradiation time of PDMS-NaTaO₃ and PVDF-NaTaO₃ films under U-L and S-L, respectively (b).

To investigate whether the spatial electric field of organic PVDF also contributes to improve the photocatalytic activity of other UV-light-responsive photocatalyst or not, the photocatalytic conversions of RhB and K values over the as-prepared PVDF-NaTaO₃ and PDMS-NaTaO₃ films were studied. Compared with S-L, U-L promotes the photocatalytic activity of PVDF-NaTaO₃ by about 30% (from 60% to 90%), and increases its k value by 2.36 times (from 0.22 h⁻¹ to 0.52 h⁻¹), presented in Fig. S6. Whereas, without spatial electric field, U-L only improves the photocatalytic activity of PDMS-NaTaO₃ by about 10%. There is no great difference in k values of PDMS-NaTaO₃ between the condition of U-L (0.32 h⁻¹) and S-L (0.27 h⁻¹). This result implies that spatial electric field of organic PVDF not only accelerates the photocatalysis of TiO₂, but also accelerates the photocatalysis of another UV-light-responsive photocatalyst NaTaO₃.

Fig. S7 The photocatalytic degradation curves of RhB (12 mg/L, 100 mL) over PDMS-BiVO₄ and PVDF-BiVO₄ films (a1), PDMS-g-C₃N₄ and PVDF-g-C₃N₄ films (a2) under S-L, U-L and U-NL, respectively. Variations of ln(C₀/C) versus light irradiation time of PDMS-BiVO₄ and PVDF-BiVO₄ films (b1), PDMS-g-C₃N₄ and PVDF-g-C₃N₄ films (b2) under S-L and U-L, respectively.

To further explore the generic enhancement impact of spatial electric field on photocatalysis, two typical visible-light-responsive photocatalysts BiVO₄ and g-C₃N₄ were synthesized and combined with PVDF and PDMS substrates, respectively. The catalytic performances of PVDF-BiVO₄, PDMS-BiVO₄, PVDF-g-C₃N₄ and PDMS-g-C₃N₄ films were studied. As Fig. S7 (a1) and (b1) display, in the presence of U-L, spatial electric field of PVDF improves the photocatalytic efficiency of PVDF-BiVO₄ by 35% and increases the corresponding k value by 2.55 times from 0.2 h⁻¹ to 0.51 h⁻¹. However, without spatial electric field generated, U-L only boosts the catalytic efficiency of PDMS-BiVO₄ by about 15%, which is much lower than 35%. The corresponding k value is also not increased much (0.21 h⁻¹ and 0.15 h⁻¹ under U-L and S-L, respectively). Moreover, the photocatalytic activities of PVDF-g-C₃N₄ and PDMS-g-C₃N₄ film are accelerated by 35% and 20% in 3 h in the condition of U-L, respectively (Fig. S7 (a2)). The k values of U-L-PVDF-g-C₃N₄ (1.54 h⁻¹) and U-L-PDMS-g-C₃N₄ (0.55 h⁻¹) are 3.85 times and 1.57 times higher than that of S-L-PVDF- $g-C_3N_4$ (0.40 h⁻¹) and S-L-PDMS- $g-C_3N_4$ (0.35 h⁻¹), respectively. The increase in k value over PDMS- $g-C_3N_4$ is not as obvious as that over PVDF- $g-C_3N_4$, as depicted in Fig. S7 (b2). It indicates that the spatial electric field generated by organic PVDF also plays a promotion role in the photocatalysis of visible-light-responsive photocatalysts, such as BiVO₄ and $g-C_3N_4$. Most significantly, the results provide a strong demonstration that the spatial electric field generated by organic PVDF plays a generic enhancement role in photocatalysis by accelerating charge separation.

References

- 1 M. Li, P. Li, K. Chang, T. Wang, L. Liu, Q. Kang, S. Ouyang, J. Ye, *Chem. Commun.* 2015, *51*, 7645-7648.
- 2 D. Xu, W. Shi, C. Song, M. Chen, S. Yang, W. Fan, B. Chen, *Appl. Catal. B: Environ.* 2016, 191, 228-234.
- 3 M. Zalfani, B. van der Schueren, Z. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. Van Tendeloo, B. Su, *J. Mater. Chem. A* 2015, *3*, 21244-21256.
- 4 B. Yuan, R. Chong, B. Zhang, J. Li, Y. Liu, C. Li, Chem. Commun. 2014, 50, 15593-15596.
- 5 D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li, *Chem. A Eur. J.* 2011, *17*, 1275-1282.
- 6 H. L. Tan, R. Amal, Y. H. Ng, ACS Appl. Mater. Inter. 2016, 8, 28607-28614.
- 7 S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150-2176.
- 8 P. Niu, L. Zhang, G. Liu, H. Cheng, Adv. Funct. Mater. 2012, 22, 4763-4770.
- 9 X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2012, 2, 1596-1606.
- 10 Y. Zhou, Y. Wang, T. Wen, B. Chang, Y. Guo, Z. Lin, B. Yang, J. Colloid Interf. Sci. 2016, 461, 185-194.
- 11 R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, *Nat. Commun.* 2013, *4*, 1432.
- 12 J. L. G. W. Yuewei Zhang, Nanoscale 2012, 4, 5300–5303.
- 13 M. Zhang, J. Xu, R. Zong, Y. Zhu, Appl. Catal. B: Environ. 2014, 147, 229-235.
- 14 X. Li, J. Zang, J. Phys. Chem. C 2009, 113, 19411-19418.
- 15 D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, J. Phys. Chem. C 2012, 116, 5082-5089.
- 16 S. C. Yan, S. B. Lv, Z. S. Li, Z. G. Zou, Dalton Trans. 2010, 39, 1488-1491.