Supporting information

Seed-induced and additive-free synthesis of oriented nanorodassembled meso/macroporous zeolites: toward efficient and costeffective catalysts for the MTA reaction

Kui Shen^a, Ning Wang^b, Xiaodong Chen^a, Zhaohui Chen^b, Yingwei Li^{a,*}, Junying Chen^{a,*}, Weizhong Qian^{b,*}, Fei Wei^b

^aKey Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.

^bBeijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. People's Republic of China.

* Corresponding author. Email: liyw@scut.edu.cn (Y. L.), cejychen@scut.edu.cn (J.

C.), qianwz@tsinghua.edu.cn (W. Q.)

Figure S1. SEM images of (a, c) C-ZSM-5 and (b, d) C-ZSM-11 under different magnification. For comparisons, conventional ZSM-5 and ZSM-11 (denoted as C-ZSM-5 and C-ZSM-11, respectively) were also synthesized by using TPABr or TBABr as the templates under seed-free crystallization conditions. The molar composition of the synthesis mixture for C-ZSM-5 and C-ZSM-11 were 3.5 NaOH : $60 \text{ SiO}_2 : 4 \text{ NaAlO}_2 : 2500 \text{ H}_2\text{O} : 8 \text{ TPABr}$ and 3.5 NaOH : $60 \text{ SiO}_2 : 4 \text{ NaAlO}_2 : 2500 \text{ H}_2\text{O} : 8 \text{ TBABr}$, respectively.

Figure S2. SEM images of silicalite-1 (a) and silicalite-2 seeds (b). It was obvious that the as-prepared silicalite-1 and silicalite-2 seeds had similar particle size of about 150 nm but with slightly different crystal morphologies of near-sphere shape and olive shape, respectively.

Figure S3. Low-resolution TEM images of (a) N-ZSM-5 and (b) N-ZSM-11, which showed the existence of zeolite nanorods that assembled into hedgehog-shaped submicron particles, in which substantial mesopores were formed due to the stacking of these nanorods, resulting in quite different structure properties from C-ZSM-5 and C-ZSM-11.

Figure S4. Nitrogen adsorption/desorption isotherms of Zn/N-ZSM-5 and Zn/N-ZSM-11.

Figure S5. TG curves of Zn/N-ZSM-5, Zn/N-ZSM-11, Zn/C-ZSM-5, and Zn/C-ZSM-11 after MTA reaction tested at 748 K ($W_{cat} = 0.7$ g; GHSV = 0.75 h⁻¹). Clearly, both of Zn/N-ZSM-5 and Zn/N-ZSM-11 have much slower coke formation rate (about 4.41 mg g_{cat}^{-1} h⁻¹) than Zn/C-ZSM-5 and Zn/C-ZSM-11 (26.33 mg g_{cat}^{-1} h⁻¹).

Sample	\mathbf{S}_{BET}	S_{Micro}^{a}	S _{Meso}	V _{Micro} ^a	$V_{Meso}{}^{b}$	
name	(m^2g^{-1})	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	
Zn/N-ZSM-5	415	371	44	0.15	0.23	
Zn/N-ZSM-11	417	369	48	0.15	0.18	

Table S1. Textural properties and compositions of various samples.

^{*a*} *t*-plot method.

 ${}^{b}V_{meso} = V_{tot} - V_{micro.}$