Supporting Information

Improving *Pseudomonas fluorescens* esterase for hydrolysis of lactones

Qingbao Ding^{*a,b*} and Romas J. Kazlauskas^{a*}

^{*a*}Department of Biochemistry, Molecular Biology & Biophysics and the Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA

^bState Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 P. R. China

Contents

Table S1. Primers for site-directed mutagenesis.	.page S-2
Table S2. Kinetic constants for hydrolysis of lactones by wt PFE and selected	
variants	page S-3
Table S3. Kinetic constants for hydrolysis of pNPAc by wt PFE and selected	
variants	.page S-4
Figure S1. Overlay of ribbon diagrams of the structures of PFE and OSL	page S-5
Figure S2. Substrate-binding pocket in wt PFE and PFE-L29P	page S-6
Figure S3. Estimated distances between residues around the top of substrate-b	inding
pocket in selected variants	.page S-7
Figure S4. Docking of ϵ -caprolactone to the active site of wt PFE, PFE-I224A at	าป
OSL	.page S-8
Figure S5. Docking of <i>p</i> NPAc to the active site of PFE-F158V	page S-9

Table S1. PCR primers for site-directed mutagenesis. Mutation site is in bold.

Target mutation	Primers
F158Y	Forward: 5' CTCAGTTCATCTCTGACTACAACGCTCCGTTCTACGG 3'
	Reverse: 5' CCGTAGAACGGAGCGTT GTA GTCAGAGATGAACTGAG 3'
F93W	Forward: 5' GAAGTTACCCTGGTTGGT TGG TCTATGGGTGGTGGTGAC 3'
	Reverse: 5' GTCACCACCACCATAGA CCA ACCAACCAGGGTAACTTC 3'
L29P	Forward: 5' GTTCTCTCACGGTTGGCCACTGGACGCTGACATGTG 3'
	Reverse: 5' CACATGTCAGCGTCCAG TGG CCAACCGTGAGAGAAC 3'
W28Q	Forward: 5' GTTCTGTTCTCTCACGGTCAACTGCTGGACGCTGACATG 3'
	Reverse: 5' CATGTCAGCGTCCAGCAG TTG ACCGTGAGAGAACAGAAC 3
L30P	Forward: 5' GTTCTCTCACGGTTGGCTGCCAGACGCTGACATGTGGGAATAC 3'
	Reverse: 5' GTATTCCCACATGTCAGCGTC TGG CAGCCAACCGTGAGAGAAC 3'
I224P	Forward: 5' ACGGTGACGGTGACCAGCCTGTTCCGTTCGAAACCAC 3'
	Reverse: 5' GTGGTTTCGAACGGAACAGGCTGGTCACCGTCACCGT 3'
I224A	Forward: 5' GGTGACGGTGACCAGGCAGTTCCGTTCGAAAC 3'
	Reverse: 5' GTTTCGAACGGAAC TGC CTGGTCACCGTCACC 3'
I224G	Forward: 5' GGTGACGGTGACCAG GGA GTTCCGTTCGAAAC 3'
	Reverse: 5' GTTTCGAACGGAACTCCCTGGTCACCGTCACC 3'
F125V	Forward: 5' GTGCTGTTACCCCGCTGGTAGGTCAGAAACCGGACTAC 3'
	Reverse: 5' GTAGTCCGGTTTCTGACCTACCAGCGGGGTAACAGCAC 3'
F158V	Forward: 5' CTCAGTTCATCTCTGACGTCAACGCTCCGTTCTAC 3'
	Reverse: 5' GTAGAACGGAGCGTTGACGTCAGAGATGAACTGAG 3'
F143V	Forward: 5' CGCTGGACGTTTTCGCTCGTGTGAAAACCGAACTGCTGAAAGA 3'
	Reverse: 5' TCTTTCAGCAGTTCGGTTTT CAC ACGAGCGAAAACGTCCAGCG 3'
F143W	Forward: 5' CTGGACGTTTTCGCTCGT TGG AAAACCGAACTGCTGAAAG 3'
	Reverse: 5' CTTTCAGCAGTTCGGTTTT CCA ACGAGCGAAAACGTCCAG 3'

	ε-Caprolactone			a-Angelicalactone				β-Butyrolactone				
Enzyme	k _{cat}	Km	k _{cat} /K _m	Fold	k _{cat}	Km	k _{cat} /K _m	Fold	k _{cat}	Km	k _{cat} /K _m	Fold
	(S ⁻¹)	(mM)	(M ^{-1*} s ⁻¹)	change ^b	(S ⁻¹)	(mM)	(M ^{-1*} s ⁻¹)	change ^b	(S ⁻¹)	(mM)	(M ^{-1*} s ⁻¹)	change ^b
wt pfe	>30 ^c	>600 ^c	51	1.0	22±6	40±20	540	1.0	3.1±0.1	1.2±0.3	2,500	1.0
C194A	nd ^d	nd ^d	21	0.4	4.2±0.7	26±7	170	0.3	14±2	9±4	1,500	0.6
F93W	5±1	360±120	13	0.3	8±2	35±13	220	0.4	0.4±0.1	0.1±0.05	4,400	1.8
W28Q	17±4	480±190	36	0.7	5±3	23±18	240	0.4	1.4±0.5	4±3	340	0.1
L30P	nd ^d	nd ^d	2	0.04	6±5	80±90	68	0.1	0.3±0.0	1.0±0.5	270	0.1
F158Y/ C194A	nd ^d	nd ^d	28	0.5	16±3	15±5	1,100	2.0	2.5±0.3	6±2	380	0.2
F93W/F158Y	nd ^d	nd ^d	4	0.09	0.7±0.2	7±4	97	0.2	1.7±0.1	0.3±0.1	6,500	2.6
L29P/F93W	15±2	260±80	58	1.1	nd	nd	23	0.04	4.8±0.3	3.1±0.6	1,500	0.6

Table S2. Kinetic constants for hydrolysis of lactones by wild-type PFE and selected variants.^a

^{*a*} Error limits are standard deviations for the best non-linear fit of the data to the Michaelis-Menten equation. ^{*b*} change in k_{cat}/K_m as compared to wild-type PFE. ^{*c*} The reaction rate increased linearly up to 600 mM substrate, so the minimum K_m value was 600 mM; the k_{cat}/K_m , was the slope of the line and the minimum k_{cat} was estimated from the product of k_{cat}/K_m and the minimum K_m . ^{*d*} nd = not determined because V_{max} could not be reached. To estimate k_{cat}/K_m , the increase in rate with increasing substrate concentration was fit to a line.

	pNPAc							
Enzyme	k _{cat}	K _m	k _{cat} /K _m	Fold change				
	(S ⁻¹)	(mM)	(M ^{-1*} s ⁻¹)					
wt pfe	44±0	1.7±0.2	26,000	1.0				
F158Y	25±8	2±1	10,000	0.4				
C194A	24±2	1.4±0.2	16,500	0.6				
F93W	16±0	1.2±0.1	13,000	0.5				
W28Q	18±2	0.7±0.2	24,400	0.9				
F125V	19±0	1.1±0.1	16,500	0.6				
I224A	47.6±0.0	1.3±0.1	36,500	1.4				
F158V	26.3±0.0	0.04±0.01	640,000	24				
F158Y/C194A	19.0±2.4	1.4±0.2	14,000	0.5				
F93W/F158Y	16.2±0.0	3.0±0.4	4,600	0.2				
F158VI224A	20.3±2.2	1.3±0.5	15,600	0.6				
F125V/F158V	55.8±7.2	0.29±0.05	193,000	7.4				
F143VF158V	57.8±5.8	0.29±0.06	202,000	7.8				
F143WF158V	63.2±6.5	0.20±0.04	322,000	12.4				
F125VF143VF158V	59.3±6.1	0.40±0.09	151,000	5.8				
F143VF158VI224A	20.4±1.7	0.30±0.08	68,000	2.6				

Table S3. Kinetic constants for hydrolysis of *p*NPAc by selected variants^a

^a Variants containing proline substitution showed very low activity and are not shown.

Figure S1. Overlay of ribbon diagrams of the structures of PFE (blue, pdb: 1va4) and OSL (green ribbon, pdb: 4g5x). Both adopt the α/β -hydrolase fold. and contain similarly positioned active-site serines (yellow ball and sticks), but differ in the leaving group region. PFE contains a phenylalanine (position 158, red ball and stick), while OSL contains a tyrosine (position 160, purple ball and stick). These two hydrolases share only 18% identical amino acids, but their main chain atoms overlap closely with root-mean-square deviation (RMSD) of 3.7 Å. The catalytic domains are more similar to each other (RMSD = 2.4 Å) than the cap domains (RMSD = 5.2 Å).

Figure S2. Substrate-binding pocket in wt PFE (A) and PFE-L29P (B). Yellow surface shows a smaller alcohol binding region in PFE L29P than in wt PFE. The substrate ε -caprolactone is docked in the binding pocket.

Figure S3. Estimated distances between residues around the top of substrate-binding pocket in selected variants. A)-F125V; B)-F143V; C)-F158V; D)-I224A. In wt PFE, the F143-I224 distance is 5.70 Å and the F125-F158 distance is 7.76 Å. The substrate ε -caprolactone docks in the binding pocket slightly differently in each case.

Figure S4. Docking of ε -caprolactone to the active site of wt PFE (A), PFE-I224A (B) and OSL (C). In all three proteins, the carbonyl oxygen of the lactone binds in the oxyanion hole. In wt PFE, the distance between N ε of H251 and O1 of ε -caprolactone 4.09 Å, which is too long for a hydrogen bond. In PFE-I224A, this distance shortens to 3.32 Å because residue A224 does not hinder the orientation of ε -caprolactone (orange arrow). In OSL, this distance is 3.21 Å. Residue F221 in OSL, which corresponds to I224 in wt PFE, also does not hinder the orientation of ε -caprolactone.

1

Figure S5. Docking of *p*NPAc to the active site of PFE-F158V. The carbonyl oxygen binds in the oxyanion hole. Attempted docking of *p*NPAc to the active site of wt PFE did not yield any bound poses because F158 hindered binding.