Electronic Supplementary Information (ESI)

Highly active Pd-Ni nanocatalysts supported on multicharged polymer matrix

Elza D. Sultanova,^{ab} Aida I. Samigullina,^a Natalya V. Nastapova,^a Irek R. Nizameev,^{ac} Kirill V. Kholin,^{ad} Vladimir I. Morozov,^a Aidar T. Gubaidullin,^a Vitaliy V. Yanilkin,^a Marsil K. Kadirov,^a Albina Y. Ziganshina^{*ab} and Alexander I. Konovalov^{ab}

^{a.} A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia. E-mail: az@iopc.ru

^{b.}A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia

^{c.}Kazan National Research Technical University, K. Marx str. 10, Kazan 420111, Russia

^{d.}Kazan National Research Technological University, Karl Marx str .68, Kazan 420015,Russia

Fig. S1. UV spectra of Ni(acac)₂ (green); Na₂[PdCl₄] (blue); p(MVCA-co-St) (red); and Pd3Ni1-p(MVCA-co-St), Pd2Ni2-p(MVCA-co-St), Pd1Ni3-p(MVCA-co-St) and Ni4-p(MVCA-co-St) (H₂O, 20 °C, / = 0.5 cm).

	Theoretical yield		ICP-AES data, yield		Molar ratio Pd-Ni measured by ICP-AES	
	Pd, C (mg/l)	Ni, <i>C</i> (mg/l)	Pd, C (mg/l), ±10%	Ni, C (mg/l), ±10%	Pd	Ni
Pd3Ni1-p(MVCA-co-St)	2.3	0.42	1.78 (77%)	0.37 (88 %)	0.73	0.27
Pd2Ni2-p(MVCA-co-St)	1.52	0.84	1.31 (86 %)	0.62 (74 %)	0.54	0.46
Pd1Ni3-p(MVCA-co-St)	0.76	1.25	0.66 (87 %)	0.98 (78 %)	0.27	0.73
Ni4-p(MVCA-co-St)	-	1.68	-	1.31 (78 %)	-	1

Table S1. Amount of Pd and Ni in the compositions measured by inductively coupled plasma atomic emission spectrometry (ICP-AES).^a

^aThe samples solutions were diluted 70-fold before measurement

Fig. S2. EDX spectrum of Ni4-p(MVCA-co-St) after background subtraction.

Fig. S3. EDX spectrum of Pd1Ni3-*p*(MVCA-*co*-St) after background subtraction.

Fig. S4. EDX spectrum of Pd2Ni2-*p*(MVCA-*co*-St) after background subtraction.

Fig. S5. EDX spectrum of Pd3Ni1-*p*(MVCA-*co*-St) after background subtraction.

Fig. S6. EDX spectrum of Pd4-*p*(MVCA-*co*-St) after background subtraction.

Characteristic lines in the EDX spectra:

Ni lines: Kα1 = 7.478 keV, Kα2 = 7.461 keV (one averaged line is observed); Pd lines: Lα1 = 2.84 keV, Lβ1 = 2.99 keV, Lβ3 = 3.07 keV, Lγ1 = 3.32 keV, Lγ3 = 3.56 keV