Supporting Information for

"Elucidating the Role of Oxygen Coverage in CO_2 Reduction on Mo_2C "

Mudit Dixit^{1,‡}, Xi Peng^{1,‡}, Marc D. Porosoff², Heather D. Willauer³ and Giannis Mpourmpakis^{1,*}

¹Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA ²Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA ³Materials Science and Technology Division, Naval Research Laboratory, Washington DC, USA

Contents

Figure S1. CO ₂ dissociation barriers vs. CO ₂ binding energy on clean, oxygen covered and K-promoted Mo ₂ C surfaces
Figure S2. Density of States (DOS) of (a) Clean Mo ₂ C, Mo ₂ C with the oxygen coverage of (b) 0.25 ML, (c) 0.50 ML, (d) 0.75 ML, (e) 1.0 ML.
Figure S3. CO dissociation barriers vs. (a) CO dissociation reaction energies and (b) CO desorption energies
Figure S4. d-occupation of Mo atoms of CO ₂ binding site near Fermi level vs. CO ₂ binding energy at different oxygen coverage
Figure S5. d-band center of Mo atoms of CO ₂ binding site near Fermi level vs. CO ₂ binding energy at different oxygen coverage
Figure S6. CO ₂ dissociation profile on hollow site at 0.25 ML O-Mo ₂ C surface
Figure S7. CO ₂ dissociation profile on hollow site at 0.5 ML O-Mo ₂ C surface
Table S1. Bader charges of different atoms in clean and K-promoted Mo ₂ C surface S10

Figure S1. CO₂ dissociation barriers vs. CO₂ binding energy on clean, oxygen covered and K-promoted Mo₂C surfaces.

Figure S2. Density of States (DOS) of (a) Clean Mo_2C , Mo_2C with the oxygen coverage of (b) 0.25 ML, (c) 0.50 ML, (d) 0.75 ML, (e) 1.0 ML.

Figure S3. CO dissociation barriers vs. (a) CO dissociation reaction energies and (b) CO desorption energies

Figure S4. d-occupation of Mo atoms of CO₂ binding site near Fermi level vs. CO₂ binding energy at different oxygen coverage.

Figure S5. d-band center of Mo atoms of CO₂ binding site near Fermi level vs. CO₂ binding energy at different oxygen coverage.

Figure S6. CO₂ dissociation profile on hollow site at 0.25 ML O-Mo₂C surface.

Figure S7. CO₂ dissociation profile on hollow site at 0.5 ML O-Mo₂C surface.

	Bader charges (e)	
Atom	Clean Mo₂C Surface	K-promoted Mo ₂ C Surface
Мо	0.61	0.75
Мо	0.75	0.77
Мо	0.48	0.76
Мо	0.79	0.76
Мо	0.2	0.76
Мо	0.77	0.77
Мо	0.49	0.77
Мо	0.79	0.76
Мо	0.2	0.79
Мо	0.77	0.79
Мо	0.53	0.78
Мо	0.78	0.78
Мо	0.21	0.78
Мо	0.76	0.76
Мо	0.47	0.78
Мо	0.79	0.78
Мо	0.2	0.57
Мо	0.77	0.2
Мо	0.48	0.17
Мо	0.79	0.2
Мо	0.23	0.19
Мо	0.78	0.09
Мо	0.88	0.18
Мо	0.76	0.46
Мо	0.19	0.42
Мо	0.77	0.48
Мо	0.5	0.51
Мо	0.79	0.83
Мо	0.47	0.42
Мо	0.77	0.46
Мо	0.47	0.5
Mo	0.78	0.44
С	-0.88	-0.89
С	-1.34	-0.88
С	-0.88	-0.89
С	-1.33	-0.89
С	-0.88	-0.89

Table S1. Bader charges of different atoms in clean and K-promoted Mo_2C surface.

-		
С	-1.34	-0.88
С	-0.88	-0.88
С	-1.33	-0.89
С	-0.88	-1.34
С	-1.34	-1.33
С	-0.87	-1.34
С	-1.36	-1.33
С	-0.88	-1.34
С	-1.34	-1.36
С	-0.88	-1.34
С	-1.34	-1.35
0	0.77	0.72
К	0	0.88
С	-1	-1.08
0	-0.98	-1.07