Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Conductive Layer Protected and Oxide Catalyst Coated Thin-Film Silicon Solar Cell as Efficient Photoanode

Ning Wang,^{ab} Min Liu,^c Junhui Liang,^a Tiantian Li,^a Hairen Tan,^{cd} Bofei Liu,^a Qixing Zhang,^a Changchun Wei,^a Ying Zhao,^{ab} and Xiaodan Zhang^{*ab}

^a Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory

of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P.

R. China

^c Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street,

Toronto, Ontario M5S1A4, Canada

^d Photovoltaic Materials and Devices Laboratory, Delft University of Technology, 2628CD Delft, The

Netherlands

*Corresponding author: Tel.: +86-22-23499304; fax: +86 22-23499304; E-mail address:

*xdzhang@nankai.edu.cn

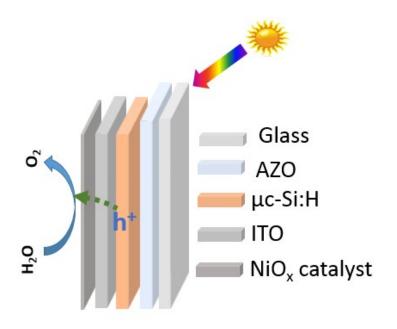


Figure S1. The scheme structure of µc-Si:H solar cell photoanode.

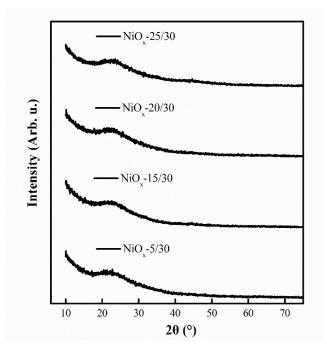
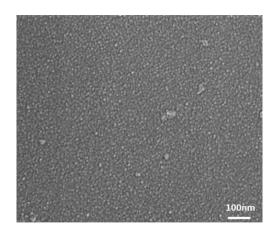
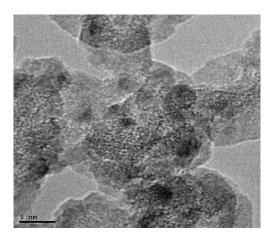




Figure S2. The XRD patterns of NiO_x catalysts with different O_2/Ar .

Figure S3. The surface SEM image of NiO_x -20/30.

Figure S4. The TEM image of NiO_x -20/30.

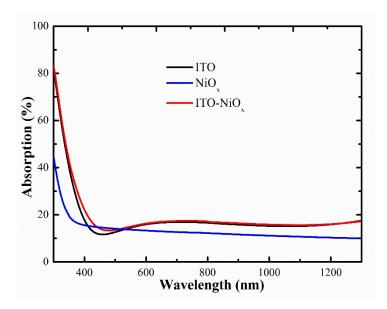


Figure S5. The absorption curves of the ITO layer, NiO_x catalyst and the combination of ITO and NiO_x -20/30 layer.

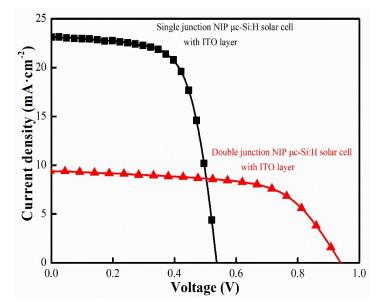


Figure S6. The I-V curves of single junction NIP and double junction NIP μ c-Si:H solar cells with ITO layer.