Electronic supplementary information

CoMn_xO_y nanosheets with molecular scaled homogeneity: An excellent catalyst for toluene combustion

Yu Wang ^a, Limin Guo ^{a,*}, Mengqiu Chen ^a, Chuan Shi ^{b,*}

^a School of Environmental Science and Technology, Huazhong University of Science and

Technology, Wuhan 430074, PR China

^b Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024,

PR China

Experimental

* Corresponding author Tel.: +86 02787792101.

E-mail address: lmguo@hust.edu.cn (L. M. Guo).

* Corresponding author Tel.: +86 041184986083.

E-mail address: chuanshi@dlut.edu.cn (C. S).

Catalyst Characterization

X-ray powder diffraction (XRD) analysis was conducted using an x`pert3 powder equipment (PANalytical B.V., Netherlands) with Cu Ka radiation. The loading amount of the catalysts was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES, Optima 2000DV, USA). The N₂ sorption measurements were performed using physisorption (ASAP 2020, Micromeritics, USA) at -196 °C. The mesopore specific surface area and the pore size distribution were calculated using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The micropore specific surface area and volume from the micropore were calculated by the t-plot method. The pore volume was calculated according to the adsorption amount of N₂ at P/P_0 (the relative pressure) = 0.995. TEM images were obtained on a JEOL-2010F electron microscope operated at 200 kV. XPS analysis was performed on an AXIS-ULTRA DLD-600W spectrometer (Shimadzu, Japan) using Al K α radiation as the excitation source. The binding energies were calculated with respect to the C (C,H) component of the C 1s peak fixed at 284.8 eV. H₂ temperature programmed reduction (H₂-TPR) and O₂-TPD experiments were carried out on a chemical adsorption analyzer (Autochem II 2920, Micromeritics). Before TPR measurement, ca. 30 mg of catalyst (40-60 mesh) was loaded to a quartz fixed-bed U-shaped microreactor (i.d. = 4 mm) and pretreated in an O2 flow of 50 mL/min at 360 °C for 1 h. After being cooled at the same atmosphere to room temperature (RT) and then purged with a N₂ flow of 50 mL/min for 15 min, the pretreated sample was finally exposed to a flow (50 mL/min) of 5% H₂/Ar mixture and heated from RT to 550 °C at a ramp of 10 °C/min. O₂-TPD analysis: 50 mg catalyst was heated to 110 °C and purged with He for 1 h to remove surface H₂O. After being cooled at the same atmosphere to room temperature (RT) and then purged with a O_2 flow of 50 mL/min for 1 h, followed just by the flow of He for 1 h to remove physical absorption oxygen. Then the catalyst was heated from 100 to 600 °C at a rate of 10 °C min.

Table S1. Preparation conditions, BET surface areas, pore volumes, average pore sizes, and H_2 consumption of the Co₃O₄ and MnO₂ catalysts.

Catalyst	Preparation method	$S_{\rm BET} a (m^2/g)$	$\frac{P_{\rm v} b}{(\rm cm^3/g)}$	APD ^c (nm)	H ₂ consumption ^d (mmol/g)
Co ₃ O ₄	prec.	20	0.035	36.1	15.7
MnO ₂	prec.	14	0.031	40.6	6.8

^{*a*} BET specific surface areas determined from the linear part of the BET equation ($P/P_0 = 0.05-0.25$). ^{*b*} The total adsorption pore volume at $P/P_0 = 0.995$. ^{*c*} Average pore diameter (APD). ^{*d*} The data were estimated by quantitatively analyzing the H₂-TPR profiles.

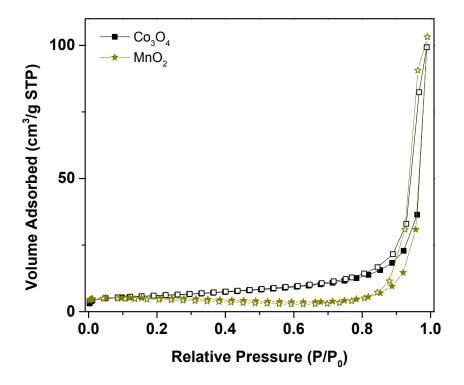


Fig. S1. N_2 adsorption-desorption isotherms curves of the as-synthesized Co_3O_4 and MnO_2 catalysts.

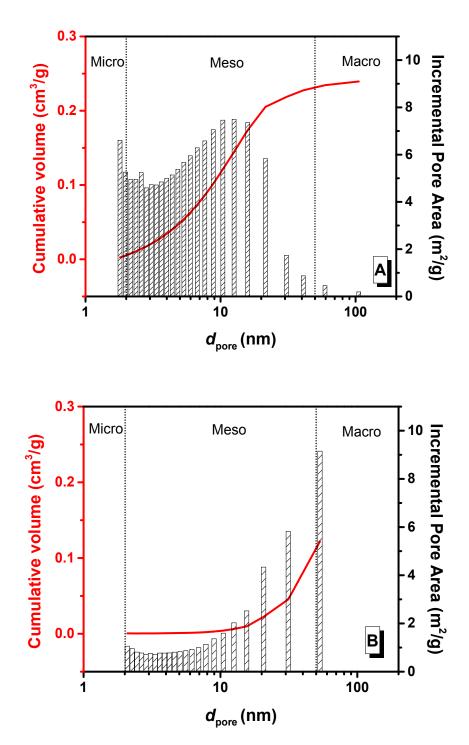


Fig. S2. Pore size distribution (PSD) of the (A) C3M1-R and (B) C3M1-C catalysts.

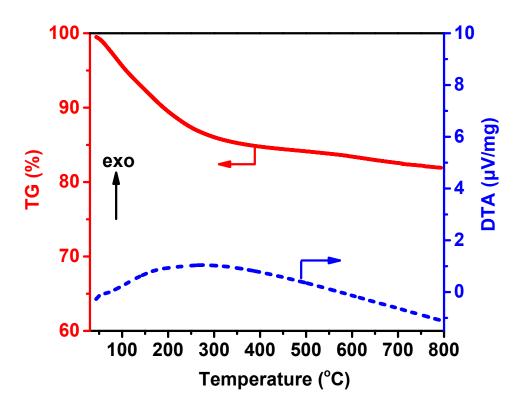
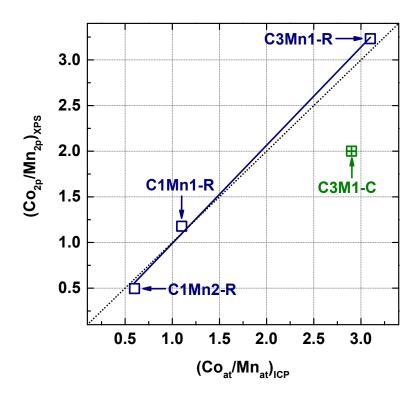



Fig. S3. TG-DTA data for the decomposition of the C3M1-R in air.

Fig. S4. Surface Co/Mn atomic ratio from Co 2p/Mn 2p signals (XPS) ratio vs the bulk (ICP) atomic composition of the CoMn_xO_y catalysts.

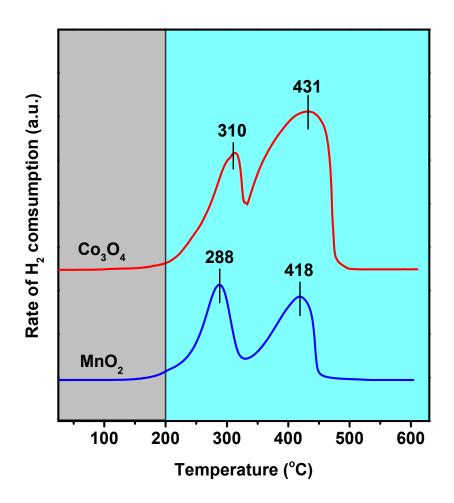


Fig. S5. H_2 -TPR profiles of the Co_3O_4 and MnO_2 catalysts.

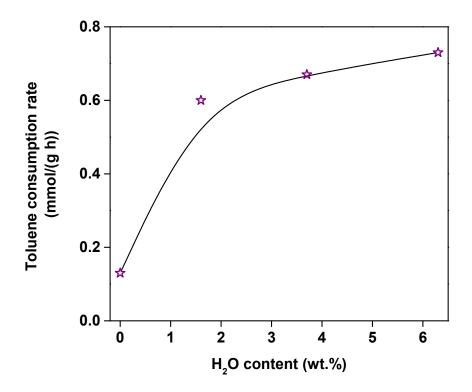
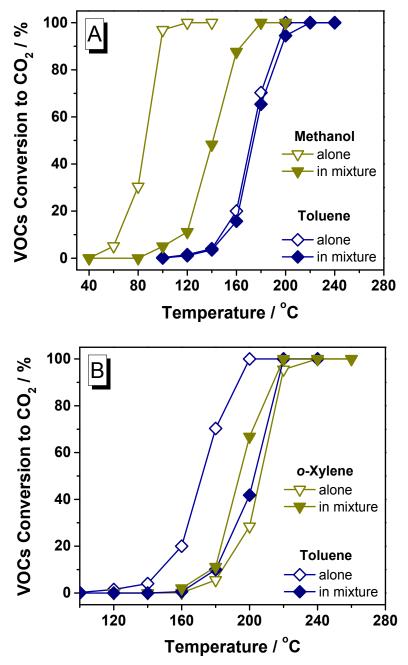



Fig. S6. Toluene consumption rates versus H_2O content of the C3M1-R catalyst.

Fig. S7. (A) Comparison of toluene and methanol conversion alone or in mixture over the C3M1-R catalyst (Toluene alone: 500 ppm toluene/1.6 wt.% H₂O/10 vol.% O₂/N₂; methanol alone: 1000 ppm methanol/1.6 wt.% H₂O/10 vol.% O₂/N₂; mixture of the two VOCs: 500 ppm toluene + 1000 ppm methanol/1.6 wt.% H₂O/10 vol.% O₂/N₂, GHSV = 67,500 h⁻¹); (B) Comparison of toluene and *o*-xylene conversion alone or in mixture over the C3M1-R catalyst (Toluene alone: 500 ppm toluene/1.6 wt.% H₂O/10 vol.% O₂/N₂; *o*-xylene alone: 500 ppm *o*-xylene/1.6 wt.% H₂O/10 vol.% O₂/N₂; mixture of the two VOCs: 500 ppm *o*-xylene/1.6 wt.% H₂O/10 vol.% O₂/N₂; mixture of the two VOCs: 500 ppm toluene + 500 ppm *o*-xylene/1.6 wt.% H₂O/10 vol.% O₂/N₂; GHSV = 67,500 h⁻¹).