Reaction Pathway for Partial Hydrogenation of 1,3-Butadiene over Pt/SiO₂

Chaoquan Hu ^{a,*}, Jiahan Sun ^a, Yafeng Yang ^a, Qingshan Zhu ^{a,*}, Bin Yu ^b

^a State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.

^b Shangdong CISRI-CHALCO Rare Earth Technology Co., Ltd. Jining 277600, Shandong, PR China.

E-mail: cqhu@ipe.ac.cn, qszhu@ipe.ac.cn;

Fax: +86 10 62536108;

Tel.: +86 10 62558393.

Supporting information

Figure S1. Light-off curves for 1,3-butadiene (0.25%) hydrogenation in 15% H_2 /Ar over the Pt/SiO₂ catalyst with different particle size.

Figure S2. Light-off curves for hydrogenation of 1,3-butadiene (0.25%) in 15% H_2/Ar over the Pt/SiO₂ catalyst with different amounts of catalyst and gas flow rates (STP).

Figure S3.DRIFT spectra for uptake of 1-butene and *trans*-2-butene on the Pt/SiO_2 catalyst at room temperature.

Figure S4. Top view of the carbonaceous species with labeling the number of the carbon atoms.

Table S1. Geometrical parameters (expressed in Å) of C_4H_x and transition states for partial hydrogenation of 1,3-butadiene on the Pt(111) surface. Pt-C represents the distance between the carbon and its coordinating Pt.

Spacios	Dt C	Dt C	Dt C	Dt C	C ₁ -	C ₂ -	C ₃ -	С-Н
species		rt-C ₂	rt-C ₃	rt-C4	C ₂	C ₃	C ₄	forming
$C_4H_6(\text{tetra-}\sigma)$	2.123	2.204	2.201	2.126	1.475	1.477	1.475	
$C_4H_6(di-\pi)$	2.204	2.228	2.249	2.185	1.413	1.458	1.414	
$C_4H_6(di-\sigma)$	2.129	2.179	-	-	1.485	1.463	1.348	
$C_4H_7(1B3R)(tri-\sigma)$	2.120	2.247	2.150	-	1.472	1.478	1.507	
$C_4H_7(1B4R)(tri-\sigma)$	2.143	2.145	-	2.108	1.486	1.520	1.516	
1-butene(di-σ)	2.122	2.172	-	-	1.486	1.517	1.517	
<i>tran</i> -2-butene(di-σ)	-	2.144	2.147	-	1.515	1.500	1.515	
<i>cis</i> -2-butene(di- σ)	-	2.160	2.161	-	1.510	1.499	1.512	-
C_4H_6 (tetra- σ) + H(top)	2.125	2.203	2.218	2.121	1.473	1.474	1.475	
C_4H_6 (di- π)+ H(top)	2.204	2.229	2.244	2.188	1.414	1.458	1.414	
C_4H_6 (di- σ)+ H(top)	2.124	2.189	-	-	1.485	1.464	1.345	
C_4H_7 (1B3R) (tri- σ) +	2 1 2 2	2 244	2 1 4 0		1 472	1 479	1 507	
H(top)	2.125	2.244	2.149	-	1.4/5	1.4/0	1.307	
cis -C ₄ H ₇ (1B3R) (tri- σ)	2 1 2 8	2 218	2 1/18		1 472	1 / 87	1 5 1 5	
+ H(top)	2.120	2.210	2.140	-	1.472	1.407	1.515	
TS ₁	2.113	2.240	-	-	1.481	1.431	1.489	1.929
TS ₂	-	2.222	2.143	-	1.470	1.488	1.503	2.064
TS ₃	-	2.266	2.144	-	1.450	1.488	1.511	2.069
TS ₄	2.123	2.215	2.213	-	1.476	1.484	1.457	1.494
TS ₅	2.132	2.152	-	2.130	1.484	1.474	1.458	1.786
TS ₆	2.122	2.251	-	-	1.474	1.439	1.382	1.643
TS ₇	2.137	2.160	-	-	1.489	1.480	1.381	1.776
C_4H_7 (1B3R) ($\eta_1 \sigma$) +	2.141	-	-	-	1.457	1.353	1.486	-
2H(top)								
TS ₈	2.178	-	-	-	1.431	1.414	1.511	1.469
1-butene (π)+ H(top)	2.211	2.269	-	-	1.407	1.503	1.534	-
TS ₉	2.178	2.292	2.235	-	1.428	1.460	1.438	1.699
TS ₁₀	2.236	2.213	-	2.146	1.392	1.473	1.441	1.652
C ₄ H ₇ (1B3R)(π-σ)	2.179	2.348	2.145	-	1.415	1.466	1.514	-
$C_4H_7(1B4R)(\pi-\sigma)$	2.235	2.233	-	2.096	1.404	1.502	1.515	-

Figure S5. Optimized structures (side and top views) of reactant, transition states, and the products for hydrogenation of C_4H_6 with the di- π configuration to C_4H_7 on the Pt(111) surface.