Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary information

Ring hydrogenation of aromatic compounds in aqueous suspensions of an Rh-loaded TiO₂ photocatalyst without use of H₂ gas

Kousuke Nakanishi,^a Ryosuke Yagi,^a Kazuya Imamura,^{b†} Atsuhiro Tanaka,^b Keiji Hashimoto,^b Hiroshi Kominami^b*

^{a.} Molecular and Material Engineering, Interdisciplinary Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.

^{b.}Department of Applied Chemistry, Faculty of Science and Engineering, Kindai

University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.

[†]Present address: Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono, Kochi 780-8520, Japan.

Figure S1 Effects of different amounts of Rh loading on photoinduced ring hydrogenation of BA to CCA in aqueous suspensions for 15 min under irradiation of UV light from a high-pressure mercury lamp.

Figure S2 (a) TEM images and (b) HAADF-STEM image. (c) Compositional line profiles of Rh (green), Ti (yellow) and O (pink) for the Rh-TiO₂. (d) Rh–L and (e) Ti–K STEM-EDX maps obtained from Rh-TiO₂. (f) Reconstructed overlay images of the maps shown in (d) and (e): green, Rh; red, Ti.

Figure S3 Absorption spectra (left axis) and action spectra of TiO_2 and 1.0 wt% Rh-TiO₂ in H₂ evolution in ring hydrogenation of BA (square) and dehydrogenation of OA (circle) (right axis).

 $AQE = \frac{2 \times amount of H_2 evolved}{amount of incident photons} \times 100.$

Equation S1 Calculation of AQE in H₂ evolution.