Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting Information for:

Dehydrocoupling of Dimethylamine-Borane Promoted by Manganese(II) *m*-Terphenyl Complexes.

Helen R. Sharpe[§], Ana M. Geer[§], Toby J. Blundell[§], Fiona R. Hastings[§], William Lewis[§], Michael W. Fay[‡], Graham A. Rance[‡], Alexander J. Blake[§], and Deborah L. Kays^{*,§}

§ School of Chemistry, University of Nottingham, University Park, Nottingham,

NG7 2RD, UK

[‡]Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Precatalyst		Me ₂ NH·BH ₃
Cat. (mol%)	mg, mmol	mg, mmol
1 (5)	10.0, 0.0160	18.9, 0.320
2 (5)	10.0, 0.0147	17.3, 0.294
3 (5)	10.0, 0.0133	15.7, 0,266
1 (2)	5.0, 0.00799	23.7, 0.400
2 (2)	5.0, 0.00733	21.5, 0.367
3 (2)	5.0, 0.00663	19.7, 0.322

Table S1. Quantities of precatalyst (1-3) and Me₂NH·BH₃ used in reactions.

Figure S1. Steric map representation and %V_{Bur} of *m*-terphenyl ligands with a sphere radius of 3.5 Å, mesh spacing 0.10, hydrogen atoms included.

Transmission electron microscopy (TEM)

Figure S2. Bright field TEM micrograph of the nanoparticles afforded during the reaction of $Me_2NH \cdot BH_3$ and **3** in C_6D_6 (0.6 mL) after heating at 60 °C for 16 h. Large sub-micron aggregates of small ~10 nm nanoparticles can be observed.

Figure S3. Conversion (%) *vs.* time (hour) for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. of **2** in C₆D₆ at 60 °C.

Figure S4. ¹¹B NMR spectrum for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. **1** in C₆D₆ after 72 min. at 60 °C.

Figure S5. ¹H NMR spectrum for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. **1** in C₆D₆ after 72 min. at 60 °C.

Figure S6. ¹H NMR spectrum for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. **2** in C₆D₆ after 5 h at 60 °C.

Figure S7. ¹¹B NMR spectrum for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. **2** in C₆D₆ after 5 h at 60 °C.

Figure S8. ¹H NMR spectrum for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. **3** in C₆D₆ after 12 h at 60 °C.

Figure S9. ¹¹B NMR spectrum for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. **3** in C₆D₆ after 12 h at 60 °C.

Figure S10. ¹¹B NMR (red) and ¹¹B{¹H} NMR (blue) spectrum for the dehydrocoupling of Me₂HN·BH₃ with 5 mol% cat. **2** in C₆D₆ after 16 h at rt.

in C₆D₆ after 16 h at rt, asterisk (*) indicates protonated ligand (2,6-Mes₂C₆H₄).

Crystallographic Methods

Under a flow of nitrogen, crystals suitable for analysis by X-ray diffraction were quickly removed from the crystallisation vessel and covered in YR-1800 perfluoropolyether oil. Crystals were mounted on a MiTeGen MicroMount[™] and cooled rapidly in a cold stream of nitrogen using an Oxford Cryostreams open flow cryostat.¹ Single crystal X-ray diffraction data were collected on Rikagu Oxford Diffraction SuperNova diffractometer (mirror-monochromated Cu-K α radiation source; $\lambda = 1.54184$ Å; ω scans), equipped with a TitanS1 CCD detector. Cell parameters were refined from the observed positions of all strong reflections in each data set and absorption corrections were applied using a Gaussian numerical method with beam profile correction (CrysAlisPro).² The structure was solved either by direct methods and all non-hydrogen atoms refined by full-matrix leastsquares on all unique F² values with anisotropic displacement parameters. Hydrogen atoms were refined with constrained geometries and riding thermal parameters. Programs used include CrysAlisPro (control of Supernova, data integration and absorption correction), SHELXL³ (structure refinement), SHELXS⁴ (structure refinement), OLEX2⁵ (molecular graphics). CIF files were checked using the online checkCIF service.⁶ CCDC-1548834 contains the supplementary data for 1. These data can be obtained free of Cambridge Crystallographic charge from The Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Crystal data for (2,6-Xyl₂C₆H₃)₂Mn (1)

C₄₄H₄₂Mn (*M* = 625.71 g/mol): tetragonal, space group *P*4₃ (no. 78), *a* = 10.52378(8) Å, *c* = 30.7376(4) Å, *V* = 3404.19(7) Å³, *Z* = 4, *T* = 120(2) K, μ (CuK α) = 3.359 mm⁻¹, *D_{calc}* = 1.221 g/cm³, 37850 reflections measured (8.402° ≤ 2Θ ≤ 147.666°), 6818 unique (*R*_{int} = 0.0309, R_{sigma} = 0.0168) which were used in all calculations. The final *R*₁ was 0.0372 (I > 2 σ (I)) and *wR*₂ was 0.0999 (all data). Flack parameter 0.003(3). Largest diff. peak/hole = 0.20/-0.30 eÅ⁻³.

References

- 1. Cosier, J.; Glazer, A. M., J. Appl. Crystallogr. 1986, 19, 105–107.
- 2. CrysAlisPRO Oxford Diffraction/Agilent Technologies UK Ltd Yarnton England.
- 3. Sheldrick, G. M., Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.

- 4. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122.
- 5. O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341.
- 6. http://checkcif.iucr.org/