Hydroisomerization of *n*-hexadecane over the Pd-Ni₂P/SAPO-31

bifunctional catalyst: synergistic effect of bimetallic active sites

Yang Zhang^a, Wei Wang^a, Xin Jiang^a, Xiaofang Su^a, O.V. Kikhtyanin^b, Wei Wu^{a*}

^a National Center for International Research on Catalytic technology, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, Heilongjiang,China.

^b Technopark Kralupy VŠCHT Praha (University of Chemistry and Technology Prague), Žižkova 7, 278 01 Kralupy nad Vltavou, Czech Republic

* Correspondence: wuwei@hlju.edu.cn; Tel./Fax: +86-0451-8660-9227.

Corresponding author: *Wei Wu Address: Xuefu Road 74#, Nangang District, Harbin, 150080, China.

Fig.S1 ²⁷Al MAS NMR spectra of (a) SAPO-31 support and (b) 0.05Pd-4Ni₂P/S31; ³¹P MAS NMR spectra of (c) SAPO-31 support and (d) 0.05Pd-4Ni₂P/S31.

Fig. S2. SEM images of SAPO-31 molecular sieves.

Fig. S3. HR-TEM images of Me/S31 bifunctional catalysts: (a) $4Ni_2P/S31$ and (b) $0.05Pd-4Ni_2P/S31$.

Fig. S4. The EDS spectrum of $0.05 Pd\mathchar`e\mbox{P}/S31$ bifunctional catalysts from TEM results.

Fig. S5. XPS spectra of bifunctional catalysts Me/S31: (a) 0.05Pd/S31, (b) 4Ni₂P/S31 and (c) 0.05Pd-4Ni₂P/S31.

Table S1. Element atom percent content from the surface of the Me/S31catalysts

Element	Content of the surface for	Content of the surface for	Content of the surface for 0.05Pd-
names	0.05Pd/S31(At.%)	4Ni ₂ P/S31(At.%)	4Ni ₂ P/S31 (At.%)
Al _{2p}	16.17	14.92	16.70
Si _{2p}	9.41	7.81	8.02
P _{2p}	12.12	15.84	13.95
O _{1s}	62.30	60.05	59.33
Ni _{2p}		1.37	2.01
Pd _{3d}			

Fig. S6. Py-IR spectra of SAPO-31 molecular sieves and Me/S31 catalysts: (a) 150 °C, (b) 250 °C and (c) 350 °C.

Table S2. Summary of relevant work done for the performance of *n*-alkanes hydroisomerization over bifunctional catalysts.

Catalyst	n alkanor -	Reaction conditions		Conversion of a alkanos (%)	Voild for ico paraffin(%)	Deference	
Catalyst	n-dikdnes -	т(℃)	Pressure	Conversion of <i>n</i> -aikanes(%)	fend for iso-paratini(%)	Reference	
0.05%Pt30%Ni ₂ P/Hβ	n-C ₇	320	20bar	48.7	37.2	[44]	
0.4%Pt-Pd/H-beta	<i>n</i> -C ₁₆	200	1bar	71.6	63.9	[41]	
0.05%Pd/SAPO-11	<i>n</i> -C ₁₀	350	20bar	82.3	70.1	[28]	
0.1%Pd/SAPO-41	<i>n</i> -C ₁₆	350	20bar	95.1	69.0	[13]	
0.18%Pd/Siral ^a 40	<i>n</i> -C ₁₆	310	30bar	47.1	43.9	[27]	
3%Ni ₂ P/ SAPO-11	n-C ₁₂	350	20bar	90.0	65.0	[38]	
0.05%Pd-4%Ni ₂ P/SAPO-31	<i>n</i> -C ₁₆	380	20bar	83.1	72.7	This work	

^a A commercial silica-alumina (Siral 40, Sasol Germany GmbH) was used as the support material and consists of 40wt% of SiO₂ and 60wt% of Al₂O₃.

Table S3. Estimation of n_{asr} the average number of acid steps involved in the transformation of one molecule of n-C₁₆ and the branched/linear ratios (i/n).

Catalysts	М	В	С	n _{as} ^d	i/n
0.05Pd/S31	0.48ª	0.24°x2.5 ^b =0.60	0.28°x4.19°=1.17	2.25	0.67
4Ni ₂ P/S31	0.58ª	0.22 ^a x2.5 ^b =0.55	0.20 ^a x4.05 ^c =0.81	1.94	1.12
0.05Pd-4Ni ₂ P/S31	0.68ª	0.13 ^a x2.5 ^b =0.33	0.19 ^a x4.02 ^c =0.76	1.77	1.55

^a Wt fractions of monobranched (M), multibranched (B) isomers and cracking products (C).

 $^{\rm b}$ Number of acid steps involved in the apparent transformation of one molecule of $\textit{n-C}_{\rm 16}$ into B product.

 c Number of acid steps involved in the apparent transformation of one molecule of n-C₁₆ into C product.

 d n_{as}=Mono× 1+Multi × 2.5+ Cracked× [4+ (N_c-2)/ 2].

Figure S7. X-ray diffraction pattern for the (a) used 0.05Pd/S31, (b) used 4Ni₂P/S31 and (c) used 0.05Pd-4Ni₂P/S31.

Table S4	. The relative	crystallinity a	and textural	property o	f the used	Me/S31	catalysts.
----------	----------------	-----------------	--------------	------------	------------	--------	------------

Samples	The relative crystallinity	Surface area (m ² /g)			Pore volume (cm ³ /g)		
Jumpics	(%)	BET ^a	Micro. ^b	Ext. Total ^c Micro. Meso			
used 0.05Pd/S31	93	183	100	83	0.318	0.038	0.280
used 4Ni ₂ P/S31	87	152	98	54	0.305	0.032	0.273
used 0.05Pd-4Ni ₂ P/S31	80	125	85	40	0.270	0.028	0.242

 $^{\rm a}\,\text{BET}$ method; $^{\rm b}$ t-Plot method; $^{\rm c}$ Volume absorbed at p/p_0= 0.99.

Fig. S8. SEM images of the used Me/S31 catalysts: (a) used 0.05Pd/S31, (b) used 4Ni₂P/S31 and (c) used 0.05Pd-4Ni₂P/S31.

Table S5. Physicochemical characteristics of the used Me/S31 catalysts.

Sample		Brønsted acid	sites (µmol/g)	3	C _{Me} ^b Metal conten		
	Weak	Medium	Strong	C _{H+}	- (μmol/g)	Pd	Ni
used 0.05°Pd/S31	11.9	9.6	23.7	45.2	0.834	0.040	-
used 4Ni ₂ P/S31	9.2	9.0	16.9	35.1	2.087	-	3.5
used 0.05Pd-4Ni ₂ P/S31	8.4	8.7	16.1	33.2	4.053	0.045	3.8

^a Measured by Py-IR method.

 $^{\rm b}$ Calculated from the metal content and metal dispersity measured by ${\rm H}_2$ chemisorption method.

 $^{\rm c}$ The theoretical value of loading metal.

^dMetal content measured by ICP-OES.

Fig.S9. DTG curves of the used samples:

(a) used 0.05Pd/S31, (b) used 4Ni₂P/S31 and (c) used 0.05Pd-4Ni₂P/S31.