Supporting Information

CO oxidation on SnO_2 surface enhanced by metal doping

Junemin Bae, Jiwhan Kim, Hojin Jeong, and Hyunjoo Lee*

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

Additional data; Figure S1-S8

Figure S1. HR-TEM images of bare metal oxide supports reduced at 400 °C; (a, b) Sb-SnO₂ and (c, d) SnO₂.

Figure S2. HAADF-STEM images of (a) 0.1 wt% Pt/Sb-SnO₂, (b) magnified image of (a), and (c, d) 0.1 wt% Pt/SnO₂ at different locations. White circles in (b) indicate single Pt atoms at SnO_2 (200) phase.

Figure S3. XRD patterns of the 0.1 wt% Pt/Sb-SnO₂, Pt/SnO₂, Pt/SiO₂, and their corresponding bare supports of Sb-SnO₂, SnO₂, SiO₂.

Figure S4. XPS Sb 3d spectra of fresh Sb-SnO₂, Sb-SnO₂ reduced at 400 °C, and 0.1 wt% Pt/Sb-SnO₂.

Figure S5. CO oxidation results for (a) Pt/Sb-SnO₂ with various Pt weight percentages and (b) 0.1 wt% M/Sb-SnO₂ (M = Pt, Pd, Rh, and Ru). CO oxidation was performed at 120,000 ml·g⁻¹·h⁻¹ with an inlet gas flow of 1% CO and 1% O₂ balanced with He.

Figure S6. HR-TEM images of (a) 0.1, (b) 1, and (c) 4 wt% Pt/Sb-SnO₂ catalysts.

Figure S7. (a) DRIFT spectra for CO chemisorption and (b) XPS Pt 4f spectra of the 0.1, 1, and 4 wt% Pt/Sb-SnO₂ catalysts.

Figure S8. O₂-TPD results by monitoring O₂ (m/z 32) desorption with a mass spectrometer on the 0.1 wt% Pt/Sb-SnO₂, Pt/SnO₂, Pt/SiO₂, and their corresponding bare supports of Sb-SnO₂, SnO₂, SiO₂.