Supporting Information

Potassium associated manganese vacancy in birnessite-type manganese dioxide for airborne formaldehyde oxidation

Shaopeng Rong ^{ab}, Kezhi Li ^a, Pengyi Zhang ^{ab}*, Fang Liu ^a, Junying Zhang ^c

^a State Key Joint Laboratory of Environment Simulation and Pollution Control,

School of Environment, Tsinghua University, Beijing 100084, P. R. China.

^b Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing

100084, China

^c Department of Physics, Beihang University, Beijing 100191, China

*Corresponding Author : E-mail: zpy@tsinghua.edu.cn

Figure S1. XRD analysis of different samples of the {001} diffraction peaks.

Figure S2. N_2 adsorption-desorption isotherm and pore size distributions of the catalysts.

Catalysts	Test conditions	T _{50%} (℃)	Ref.
α-MnO ₂	HCHO = 170 ppm; GHSV = 100 L/g h	90	[1]
β -MnO ₂		140	
γ -MnO ₂		125	
δ-MnO ₂		58	
Birnessite	HCHO = 100 ppm; GHSV = 60 L/g h	93	[2]
Cryptomelane		85	
Ramsdellite		100	
MnOOH		105	
Pyrolusite		150	
Cryptomelane	HCHO = 400 ppm; GHSV = 18 L/g h	110	[3]
Todorokite		140	
MnO _x /SBA-15	HCHO = 150 ppm; GHSV = 30 L/g h	107	[4]
Porous Birnessite	HCHO = 460 ppm; GHSV = 30 L/g h	85	[5]
MnO _x -CeO ₂	HCHO = 580 ppm; GHSV = 30 L/g h	>80	[6]
Honeycomb MnO ₂	HCHO = 100 ppm; GHSV = 50 L/g h	~75	[7]
Hollow MnO ₂		~58	
α -MnO ₂		100	
β-MnO ₂	HCHO = 100 ppm; GHSV = 30 L/g h	150	[8]
3D-MnO ₂		90	
MnO ₂		68	
1K/MnO ₂	HCHO = 100 ppm; GHSV = 90 L/g h	56	This work.
2.5K/MnO ₂		61	
5K/MnO ₂		78	
8K/MnO ₂		86	

Table S1. Survey of catalytic performance of MnO_2 catalysts for the oxidation of HCHO.

[1] J.H. Zhang, Y.B. Li, L. Wang, C.B. Zhang, H. He, Catal. Sci. Technol. 5 (2015) 2305-2313.

[2] L. Zhou, J. Zhang, J.H. He, Y.C. Hu, H. Tian, Mater. Res. Bull. 46 (2011) 1714-1722.

[3] T. Chen, H.Y. Dou, X.L. Li, X.F. Tang, J.H. Li, J.M. Hao, Microporous Mesoporous Mater. 122 (2009) 270-274.

[4] R. Averlant, S. Royer, J.M. Giraudon, J.P. Bellat, I. Bezverkhyy, G. Weber, J.F. Lamonier, ChemCatChem 6 (2014) 152-161.

[5] H. Tian, J.H. He, L.L. Liu, D.H. Wang, Z.P. Hao, C.Y. Ma, Microporous Mesoporous Mater. 151 (2012) 397-402.

[6] X.F. Tang, Y.G. Li, X.M. Huang, Y.D. Xu, H.Q. Zhu, J.G. Wang, W.J. Shen, Appl.

Catal. B: Environ. 62 (2006) 265-273.

[7] H.M. Chen, J.H. He, C.B. Zhang, H. He, J. Phys. Chem. C. 111 (2007) 18033-18038.

[8] B.Y. Bai, Q. Qiao, J.H. Li, J.M. Hao, Chin. J. Catal. 37 (2016) 27-31.