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Experimental Details 

 
Photocatalytic H2 production: The photocatalytic H2 production reactions were evaluated in a 135 

mL quartz reactor at ambient conditions. Typically, 1.0 mg of the photo catalyst was dispersed in 

15 mL of aqueous solution containing 20% lactic acid (LA), and it act as a sacrificial reagent.  Then, 

the reactor was closed with a gas-tight rubber septum. Prior to irradiation, the suspension was 

evacuated and outgassing with Argon (Ar) gas for 30 min to remove air. A solar simulator 

equipped with an AM 1.5 G filter and 150 W Xenon lamp (Abet Technologies) was used as the 

irradiation source. The output light intensity was adjusted to 1 sun (100 W/m2) using 15151 low- 

cost calibrated Si reference cell (ABET technologies). The experiments were repeated in three 

times to check reproducibility. Every test was carried out as described above for 3 h under 

irradiation source. The H2 gas production was analyzed using an off-line gas chromatograph (GC, 

Young Lin Autochro-3000, model 4900) equipped with a thermal conductivity detector (TCD) and 

a 5 Å molecular sieve column. The generated H2 gas (100 μL) was collected at the headspace of 

quartz reactor, and purged into the GC, and evaluated by a calibration plot to 5 % standard gas of 

H2. 

The apparent quantum efficiency (QE) was calculated by the following equation. 

 

QE = 
number of reacted electrons 

× 100 (%) 
number of incident photons 

 

= 
(number of evolved H2 molecules) ×2 

× 100 (%) 
number of incident photons 

 

Here the QE was measured under the same photocatalytic hydrogen evolution experimental 

conditions except the irradiation source, here 150 W Xe lamp with 425 nm band pass filter having 

7 optical density greater than 4 in the rejection band and slope factor less than 1 %, were used as 
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light sources, instead of the solar stimulator. The output light intensity was measured using 15151 

low-cost calibrated Si reference cell (ABET technologies). The liquid level is ~16 cm far from the 

window of lamp and the illuminated area is 21.24 cm2. 

Photo-electrochemical measurements: Photo-electrochemical studies were obtained in a three- 

electrode system by CHI 617B electrochemical workstation. A solar simulator equipped with an 

AM 1.5G filter and 150 W Xe lamp (Abet Technologies) was used as the irradiation source to 

produce monochromatic illuminating light. The output light intensity was adjusted to 1 sun (100 

W/m2) using 15151 low cost calibrated Si reference cell (ABET technologies). The reference and 

counter electrodes were Ag/AgCl and platinum wire, respectively, and 0.5 M Na 2SO4 aqueous 

solution served as the electrolyte. The measured pH value is 6.72. To prepare the working electrode, 

the as-synthesized 10 mg of CdS and MWO/CdS nanocomposites were first dispersed into ethanol 

(450 μL) and 50 μL of Nafion mixtures under soft ultrasonic stirring to get a uniform suspension. 

The solution containing the catalyst (30 μL) was dropped onto the pretreated indium–tin oxide 

(ITO) conductor glass substrate, which was then dried in an oven at 80 °C for 3 h. Photoresponses 

were measured at 0.0 V during on-off cycling of the solar simulator. Electrochemical impedance 

spectroscopy (EIS) was carried out at open-circuit potential over the frequency range of 105 and 

10−1 Hz with an AC voltage magnitude of 5 mV. Moreover, to evaluate the flat-band potential 

(VFB) of the CdS and MWO/CdS Mott−Schottky plots at a frequency of 1 kHz were measured 

using a standard potentiostat equipped with an impedance spectra analyzer in the same 

electrochemical configuration and electrolyte under the dark condition. The measured potentials 

versus Ag/AgCl were converted to the normal hydrogen electrode (NHE) scale by ENHE= EAg/AgCl 

+ 0.197. The cyclicvoltammograms (CV) were measured with as scanning rate of 10 mV/s using 
 

whereas the electrolyte was consisting of 0.1M Na2SO4 aqueous solution with 1mM K3[Fe(CN)6].
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Supporting Figures 
 

 
 

 
Figure S1. XRD patterns of MWOE, MWOP and MWOB nanocomposites. 

 
 

 
Figure S2. SEM image of CdS nanorods. 
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Figure S3. FESEM images and EDS elemental mapping analyses of MWOE/CdS. 



S6  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

Figure S4. Time-resolved photoluminescence spectra of CdS and MWOE/CdS at 560 nm. 
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Figure S5. ESR spectra of CdS, MWOE and MWOE/CdS. 
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Figure S6. N2 adsorption/desorption isotherms of CdS and MWOE/CdS and the pore-size 

distribution of MWOE/CdS nanocomposite. 

 

 
Figure S7. Electrochemical impedance measurements of CdS and MWOE/CdS nanocomposites. 
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Figure S8. The solvent effect on photocatalytic H2 production rate. 
 
 

 
Figure S9. The Mo dopant concentration effect on photocatalytic H2 production rate. 
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Figure S10. Recycling study of MWOE/CdS nanocomposite. 

 

 

 

 
 

 

Figure S11. The effect of various scavengers on photocatalytic H2 production rate. 
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Figure S12. Mott−Schottky plots (Potential vs. EAg/AgCl) of CdS and MWO in 0.5 M Na2SO4 

electrolyte solution. 
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Table S1. Comparisons of photocatalytic H2 production rate for representative W and Mo oxides 

based photocatalysts. 

 

 

Photocatalyst 

 

Scavenger 

 

Light source 

H2 

production rate 

(µmol∙h-1∙g-1) 

 

Reference 

Mo-W18O49/CdS Lactic acid 
150 W Xe lamp 

(λ ≥ 420 nm) 
40,225 

Present 

work 

W18O49/g-C3N4 Triethanolamine 
300 W Xe lamp 

(λ ≥ 420 nm) 
738 2 

α-MoO3-WO3/CdS 
Artificial waste 

water 

300 W Xe lamp 

(λ ≥ 420 nm) 
8 3 

WO3/TiO2 Ethanol 
Hg lamp 

(λ =254 nm) 
9,560 4 

Cs/WO3 
WO3:PEG at 

1:1 for thin film 
250 W Hg lamp 
(λ=365–550 nm) 

3,500 5 

WC-CdS Na2S/Na2SO3 
300 W Xe lamp 

(λ ≥ 420 nm) 
1,370 6 

MoO3-Polymer Methanol 
300 W Hg lamp 

(λ =420 nm) 
350 7 

Pt-IrO2/WO3 KI solution 
Visible light 

(λ=400–800 nm) 
15 8 

CsTaWO6/Rh Methanol 
150 W solar 

(1 sun irradiation) 
39 9 

Pt/WO3/CdS/TiO2 Formic acid 
500 W Xe lamp 

(λ ≥ 420 nm) 
1,059 10 

CdS/ WO3 Lactic acid 
300 W Xe lamp 

(λ ≥ 420 nm) 
369 11 

CdS/Au/WO3 Na2S/Na2SO3 
300 W Xe lamp 

(λ ≥ 420 nm) 
1,500 12 

 
CdS/Au/U-WO3 

 
Na2S/Na2SO3 

300 W Xe lamp 
(λ ≥ 420 nm) 

 
1,390 

 
13 
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