Electronic Supplementary Information

Multidirectional-charge-transfer urchin-type Mo-doped W18O49 nanostructures on CdS nanorods for enhanced photocatalytic hydrogen evolution

P. Bhavani,^a D. Praveen Kumar,^a Seonghyun Jeong,^b Eun Hwa Kim,^a Hanbit Park,^a

Sangyeob Hong,^a Madhusudana Gopannagari,^a D. Amaranatha Reddy,^a

Jae Kyu Song^{*b} and Tae Kyu Kim^{*a}

^a Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea

^b Department of Chemistry, Kyung Hee University, Seoul 17104, Republic of Korea

*Corresponding authors. E-mail) tkkim@pusan.ac.kr (T.K.K.) and jaeksong@khu.ac.kr (J.K.S.)

Experimental Details

Photocatalytic H_2 *production:* The photocatalytic H_2 production reactions were evaluated in a 135 mL quartz reactor at ambient conditions. Typically, 1.0 mg of the photo catalyst was dispersed in 15 mL of aqueous solution containing 20% lactic acid (LA), and it act as a sacrificial reagent. Then, the reactor was closed with a gas-tight rubber septum. Prior to irradiation, the suspension was evacuated and outgassing with Argon (Ar) gas for 30 min to remove air. A solar simulator equipped with an AM 1.5 G filter and 150 W Xenon lamp (Abet Technologies) was used as the irradiation source. The output light intensity was adjusted to 1 sun (100 W/m²) using 15151 low-cost calibrated Si reference cell (ABET technologies). The experiments were repeated in three times to check reproducibility. Every test was carried out as described above for 3 h under irradiation source. The H₂ gas production was analyzed using an off-line gas chromatograph (GC, Young Lin Autochro-3000, model 4900) equipped with a thermal conductivity detector (TCD) and a 5 Å molecular sieve column. The generated H₂ gas (100 µL) was collected at the headspace of quartz reactor, and purged into the GC, and evaluated by a calibration plot to 5 % standard gas of H₂.

The apparent quantum efficiency (QE) was calculated by the following equation.

$$QE = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100 \,(\%)$$

$$= \frac{(\text{number of evolved } H_2 \text{ molecules}) \times 2}{\text{number of incident photons}} \times 100 \,(\%)$$

Here the QE was measured under the same photocatalytic hydrogen evolution experimental conditions except the irradiation source, here 150 W Xe lamp with 425 nm band pass filter having 7 optical density greater than 4 in the rejection band and slope factor less than 1 %, were used as

light sources, instead of the solar stimulator. The output light intensity was measured using 15151 low-cost calibrated Si reference cell (ABET technologies). The liquid level is ~ 16 cm far from the window of lamp and the illuminated area is 21.24 cm².

Photo-electrochemical measurements: Photo-electrochemical studies were obtained in a threeelectrode system by CHI 617B electrochemical workstation. A solar simulator equipped with an AM 1.5G filter and 150 W Xe lamp (Abet Technologies) was used as the irradiation source to produce monochromatic illuminating light. The output light intensity was adjusted to 1 sun (100 W/m²) using 15151 low cost calibrated Si reference cell (ABET technologies). The reference and counter electrodes were Ag/AgCl and platinum wire, respectively, and 0.5 M Na₂SO₄ aqueous solution served as the electrolyte. The measured pH value is 6.72. To prepare the working electrode, the as-synthesized 10 mg of CdS and MWO/CdS nanocomposites were first dispersed into ethanol (450 μ L) and 50 μ L of Nafion mixtures under soft ultrasonic stirring to get a uniform suspension. The solution containing the catalyst (30 µL) was dropped onto the pretreated indium-tin oxide (ITO) conductor glass substrate, which was then dried in an oven at 80 °C for 3 h. Photoresponses were measured at 0.0 V during on-off cycling of the solar simulator. Electrochemical impedance spectroscopy (EIS) was carried out at open-circuit potential over the frequency range of 105 and 10-1 Hz with an AC voltage magnitude of 5 mV. Moreover, to evaluate the flat-band potential (VFB) of the CdS and MWO/CdS Mott-Schottky plots at a frequency of 1 kHz were measured using a standard potentiostat equipped with an impedance spectra analyzer in the same electrochemical configuration and electrolyte under the dark condition. The measured potentials versus Ag/AgCl were converted to the normal hydrogen electrode (NHE) scale by E_{NHE}= E_{Ag/AgCl} + 0.197. The cyclicvoltammograms (CV) were measured with as scanning rate of 10 mV/s using whereas the electrolyte was consisting of $0.1M Na_2SO_4$ aqueous solution with $1mM K_3[Fe(CN)_6]$.¹

Supporting Figures

Figure S1. XRD patterns of MWOE, MWOP and MWOB nanocomposites.

Figure S2. SEM image of CdS nanorods.

Figure S3. FESEM images and EDS elemental mapping analyses of MWOE/CdS.

Figure S4. Time-resolved photoluminescence spectra of CdS and MWOE/CdS at 560 nm.

Figure S5. ESR spectra of CdS, MWOE and MWOE/CdS.

Figure S6. N_2 adsorption/desorption isotherms of CdS and MWOE/CdS and the pore-size distribution of MWOE/CdS nanocomposite.

Figure S7. Electrochemical impedance measurements of CdS and MWOE/CdS nanocomposites.

Figure S8. The solvent effect on photocatalytic H₂ production rate.

Figure S9. The Mo dopant concentration effect on photocatalytic H₂ production rate.

Figure S10. Recycling study of MWOE/CdS nanocomposite.

Figure S11. The effect of various scavengers on photocatalytic H₂ production rate.

Figure S12. Mott–Schottky plots (Potential vs. $E_{Ag/AgCl}$) of CdS and MWO in 0.5 M Na₂SO₄ electrolyte solution.

Photocatalyst	Scavenger	Light source	H ₂ production rate (µmol·h ⁻¹ ·g ⁻¹)	Reference
Mo-W ₁₈ O ₄₉ /CdS	Lactic acid	150 W Xe lamp (λ ≥ 420 nm)	40,225	Present work
W ₁₈ O ₄₉ /g-C ₃ N ₄	Triethanolamine	$\begin{array}{l} 300 \text{ W Xe lamp} \\ (\lambda \geq 420 \text{ nm}) \end{array}$	738	2
α-MoO3-WO3/CdS	Artificial waste water	$\begin{array}{c} 300 \text{ W Xe lamp} \\ (\lambda \geq 420 \text{ nm}) \end{array}$	8	3
WO ₃ /TiO ₂	Ethanol	Hg lamp $(\lambda = 254 \text{ nm})$	9,560	4
Cs/WO ₃	WO ₃ :PEG at 1:1 for thin film	250 W Hg lamp (λ=365–550 nm)	3,500	5
WC-CdS	Na ₂ S/Na ₂ SO ₃	$\begin{array}{c} 300 \text{ W Xe lamp} \\ (\lambda \geq 420 \text{ nm}) \end{array}$	1,370	6
MoO ₃ -Polymer	Methanol	300 W Hg lamp (λ =420 nm)	350	7
Pt-IrO ₂ /WO ₃	KI solution	Visible light (λ=400-800 nm)	15	8
CsTaWO ₆ /Rh	Methanol	150 W solar (1 sun irradiation)	39	9
Pt/WO ₃ /CdS/TiO ₂	Formic acid	500 W Xe lamp $(\lambda \ge 420 \text{ nm})$	1,059	10
CdS/ WO ₃	Lactic acid	$\begin{array}{c} 300 \text{ W Xe lamp} \\ (\lambda \geq 420 \text{ nm}) \end{array}$	369	11
CdS/Au/WO ₃	Na ₂ S/Na ₂ SO ₃	$\begin{array}{c} 300 \text{ W Xe lamp} \\ (\lambda \geq 420 \text{ nm}) \end{array}$	1,500	12
CdS/Au/U-WO ₃	Na ₂ S/Na ₂ SO ₃	$\begin{array}{c} 300 \text{ W Xe lamp} \\ (\lambda \geq 420 \text{ nm}) \end{array}$	1,390	13

Table S1. Comparisons of photocatalytic H_2 production rate for representative W and Mo oxides based photocatalysts.

References

- M. Gopannagari, D. P. Kumar, D. A. Reddy, S. Hong, M. I. Song and T. K. Kim, J. Catal., 2017, 351, 153.
- K. Song, F. Xiao, L. Zhang, F. Yue, X. Liang, J. Wang and X. Sua, J. Mol. Catal., 2016, 418–419, 95.
- 3. H. H. El-Maghrabi, H. R. Alib and S. A. Younis, RSC Adv., 2017, 7, 4409.
- 4. A. Pérez-Larios and R. Gómez, Avances Investigación en Ingeniería, 2013, 10, 27.
- 5. G. W. Ho, K. J. Chua and D. R. Siow, Chem. Eng. J., 2012, 181-182, 661.
- J. S. Jang, D. J. Ham, N. Lakshminarasimhan, W. Y. Choi and J. S. Lee, *Appl. Catal. A*, 2008, 346, 149.
- 7. C. Ma, J. Zhou, Z. Cui, Y. Wang and Z. Zou, Sol. Energ. Mat. Sol. C., 2016, 150, 102.
- R. Abe, K. Shinmei, N. Koumura, K. Hara and B. Ohtani, J. Am. Chem. Soc., 2013, 135, 16872.
- 9. T. Weller, L. Specht and R. Marschall, Nano Energy, 2017, 31, 551.
- Y.-L. Chen, S.-L. Lo, H.-L. Chang, H.-M. Yeh, L. Sun and C. Oiu, *Water Sci. Technol.*, 2016, 73, 1667.
- 11. L. J. Zhang, S. Li, B. K. Liu, D. J. Wang and T. F. Xie, ACS Catal., 2014, 4, 3724.
- X. Cui, Y. Wang, G. Jiang, Z. Zhao, C. Xu, Y. Wei, A. Duan, J. Liu and J. Gao, *RSC Adv.*, 2014, 4, 15689.
- X. L. Yin, J. Liu, W.-J. Jiang, X. Zhang, J.-S. Hu and L.-J. Wan, *Chem. Commun.*, 2015, 51, 13842.