

Catalysis Science & Technology
Electronic Supporting Information

**A highly dispersed and stable Ni/mSiO₂-AE nanocatalyst for
benzoic acid hydrogenation**

Huiling Zhang^{a‡}, Xuejia Gao^{a‡}, Yuanyuan Ma^a, Xue Han^{a,b}, Libo Niu^{a*}, and Guoyi Bai^{a*}

^a Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and
Environmental Science, Hebei University, Baoding 071002, P.R. China.

E-mail address: baiguoyi@hotmail.com(G. Bai), libo_niu@126.com (L. Niu);
Fax: +86-312-5937102; Phone: +86-312-5079359;

^b Hebei Geological and Mineral Central Laboratory, Baoding 071051, People's Republic of China.

‡ the two authors contribute the same to this work.

Table of Contents

XRD patterns.....	S3
TEM images.....	S4
Table S1	S5
Table S2	S6

XRD patterns

Fig. S1 XRD patterns of Ni/mSiO₂-AE reduced at different temperatures.(a. 500 °C, b. 600 °C, c. 700 °C)

XRD patterns of the Ni/mSiO₂-AE catalyst reduced at different temperatures are shown in Fig. S1. Notably, NiO diffraction peaks at 2θ of 37.3° , 62.9° and 75.4° , together with a broad peak of Ni⁰ (at 44.5°), were found in the XRD pattern of the Ni/mSiO₂-AE catalyst reduced at 500 °C (Fig. R1a), indicating the partially reduction of the NiO species in Ni/mSiO₂-AE at 500 °C (*Appl. Catal., B: Environ.*, 2013, **132–133**, 282–292, *ACS Catal.*, 2014, **4**, 1526–1536.) However, only Ni⁰ diffraction peaks at 2θ of 44.5° , 51.8° and 76.4° are found in the XRD patterns of Ni/mSiO₂-AE samples reduced at 600 and 700 °C (Fig. R1 b and c) (*J. Catal.*, 2012, **291**, 149–154). In addition, the characteristic diffraction peaks of Ni/mSiO₂-AE reduced at 700 °C are sharper than those of Ni/mSiO₂-AE reduced at 600 °C, indicating that larger Ni⁰ nanoparticles were formed in higher reduction temperature.

TEM image

Fig. S2 TEM images of (a) Ni/mSiO₂-AE (700 °C), (b) HRTEM of Ni/mSiO₂-AE (700 °C), (c) Ni/mSiO₂-AE (600 °C) and (d) HRTEM of Ni/mSiO₂-AE (600 °C).

TEM images of Ni/mSiO₂-AE (700 °C) and Ni/mSiO₂-AE (600 °C) are shown in Fig. S2. As can be seen, the mean size of nickel in Ni/mSiO₂-AE (700 °C) is about 5.5 nm, which is about 1.7 times larger than that of Ni/mSiO₂-AE (600 °C) (3.2 nm), in good agreement with the XRD results.

Table S1**Table. S1** Activities of catalysts reduced at different temperatures

Catalysts	Conversion (%)	Selectivity (%)
Ni/mSiO ₂ -AE(500 °C)	39.4	96.8
Ni/mSiO ₂ -AE(600 °C)	98.9	99.1
Ni/mSiO ₂ -AE(700 °C)	97.9	94.9

Reaction conditions: BA (0.5 g), catalyst (0.1 g), cyclohexane (40 mL),

T=150 °C, initial P(H₂) =5 MPa, reaction time 3 h.

The activities of the Ni/mSiO₂-AE catalyst reduced at different temperatures indicated that the Ni/mSiO₂-AE catalyst reduced at 600 °C exhibited similar hydrogenation performance with the catalyst reduced at 700 °C, both much higher than that of the one reduced at 500 °C. Considering the energy economy, 600 °C is selected as an appropriate reduction temperature for Ni/mSiO₂-AE.

Table S2**Table S2** TOF values of Ni/mSiO₂-AE and reported noble metal catalysts

Catalysts	Conversion (%)	TOF (h ⁻¹)
Ir/γ-Al ₂ O ₃ ⁷	52	40
Pd/AC ⁸	92.0	5.7
Pd/CN ⁹	100	0.883
Pd _x Ru _y ¹⁰	45	----
Rh/C ¹¹	95.8	----
Ru ₁₀ Pt ₂ ¹²	78.5	317
RuPd/CN ¹³	100	2066
Ni/mSiO ₂ -AE	98.9 ^a	137.4 ^b

^a Reaction conditions: BA (0.5 g), catalyst (0.1 g), cyclohexane (40 mL), T=150 °C, initial P(H₂)=5 MPa, reaction time 3 h;

^b TOF value were calculated on the basis of the number of moles of benzoic acid converted per mole of active metal per hour, according to the literature (*Ind. Eng. Chem. Res.*, 2013, **52**, 1224).

---- There was no TOF value in this article.

Superscript 7-13 refer to the serial number of the references in the manuscript.

As can be seen, Ni/mSiO₂-AE showed good catalytic activities with a TOF value of 134.7 h⁻¹, much higher than those of Ir/γ-Al₂O₃⁷ (40 h⁻¹), Pd/AC⁸ (5.7 h⁻¹), Pd/CN⁹ (0.883 h⁻¹), but lower than Ru₁₀Pt₂¹² (317 h⁻¹) and RuPd/CN¹³ (2066 h⁻¹). The above results indicated that the Ni/mSiO₂-AE has a comparable activity with most of noble metal catalysts.