Supplementary Information

Magnetic nickel ferrite nanoparticles as highly durable catalyst for catalytic transfer hydrogenation of bio-based aldehydes

Jian He,^{a,b} Song Yang^{b,*} and Anders Riisager^{a,*}

^a Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

^b State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.

Figure S1. $-\ln(1-X)$ vs. reaction time for Fe₃O₄, CoFe₂O₄ and NiFe₂O₄. Reaction conditions: FF (2 mmol), catalyst (0.06 g), 2-propanol (10 mL), T = 180 °C, t = 0.5-4 h.

Figure S2. NH_3 -TPD (a) and CO₂-TPD (b) profile of different nanoparticle ferrite catalysts.

Figure S3. N_2 adsorption-desorption isotherms and pore size distribution of fresh (a) and spent (b) NiFe₂O₄ catalyst.

Entry	Catalyst	Rate constant (min ⁻¹)	R ²	Standard error
1	Fe ₃ O ₄	$2.9 \cdot 10^{-3}$	0.97	3.0.10-4
2	CoFe ₂ O ₄	4.3·10 ⁻³	0.97	4.7.10-4
3	NiFe ₂ O ₄	11.5·10 ⁻³	0.98	9.9·10 ⁻⁴

Table S1. Rate constant in CTH of FF to FAOL over different catalyst at 180 °C a

^a Reaction conditions: FF (2 mmol), catalyst (0.06 g), 2-propanol (10 mL), T = 180 °C, t = 0.5-4 h.

Table S2. Rate constants, R^2 values and standard errors at different reaction temperatures and calculated activation energy for the CTH of FF over NiFe₂O₄^a

Temperature	Rate constant k	R ²	Standard	Ea	R ²	Standard
(°C)	(\min^{-1})		error	(kJ/mol)		error
120	1.6.10-3	0.99	2.2·10 ⁻⁵			
140	2.7.10-3	0.98	2.1.10-4	10 2	0.97	0.6
160	5.1.10-3	0.99	1.1.10-4	46.2		
180	11.5.10-3	0.98	9.9·10 ⁻⁴			

^a Reaction conditions: FF (2 mmol), catalyst (0.06 g), 2-propanol (10 mL), t = 0.5-4 h.

Table S3. Comparison of the activity of $NiFe_2O_4$ nanoparticles with other heterogeneous catalysts in the CTH of FF to FAOL using alcohols as H-donor

Entry	Catalyst	H-donor	Temp.	Time	Conv.	Yield	Sel.	Ea	Ref.
			(°C)	(h)	(%)	(%)	(%)	(kJ/mol)	
1	Co-Ru/C	benzyl alcohol	150	12	98	98	100	58	[S1]
2	Ru/C+DyCl ₃	2-Propanol	180	3	100	97	97	-	[S2]
3	Pd/Fe_2O_3	2-Propanol	150	7.5	66	37	56.1	46.8	[83]
4	γ-Fe ₂ O ₃ @HAP	2-Propanol	180	10	96.2	91.7	95.3	47.69	[S4]
5	Fe-L1/C-800	2-Butanol	160	15	91.6	76.0	83	-	[85]
6	Ni-Cu/Al ₂ O ₃	2-Propanol	200	4	95.43	95.41	>99	-	[S6]
7	ZrPN	2-Propanol	140	2	98	98	>99	70.5	[S7]
8	NiFe ₂ O ₄	2-Propanol	180	6	98.5	94.0	95.4	48.2	This work

[S1] Gao, Z.; Yang, L.; Fan, G.; Li, F. ChemCatChem, 2016, 8, 3769-3779.

[S2] Panagiotopoulou, P.; Martin, N.; Vlachos, D. G. ChemSusChem, 2015, 8, 2046-2054.

[S3] Scholz, D.; Aellig, C.; Hermans, I. ChemSusChem, 2014, 7, 268-275.

[S4] Wang, F.; Zhang, Z. ACS Sustain. Chem. Eng., 2017, 5, 942-947.

[S5] Li, J.; Liu, J.; Zhou, H.; Fu, Y. ChemSusChem, 2016, 9, 1339-1347.

[S6] Kannapu, H. P. R.; Mullen, C. A.; Elkasabi, Y.; Boateng, A. A. Fuel Processing Technol. 2015, 137, 220-228.

[S7] Li, H.; He, J.; Riisager, R.; Saravanamurugan, S.; Song. B.; Yang, S. ACS Catal. 2016, 6, 7722-7727.

		U 1		
Entry	Stirring speed	FF conversion	FAOL yield	FAOL selectivity
	(rpm)	(%)	(%)	(%)
1	600	96	91	95
2	900	99	94	95
3	1200	99	87	88

Table S4. The effect of stirring speed on the CTH of FF to FAOL over NiFe₂O₄ a

^a Reaction conditions: FF (2 mmol), catalyst (0.06 g), 2-propanol (10 mL), T = 180 °C, t = 6 h.