Improved Thermal Stability of a Copper-containing Ceriabased Catalyst for Low Temperature CO Oxidation under Simulated Diesel Exhaust Conditions

Iljeong Heo^{1,4}, Steven J. Schmieg², Se H. Oh², Wei Li², Charles H.F. Peden³, and Chang Hwan Kim^{2*}, János Szanyi^{3*}

¹ Department of Chemical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, United States

² Chemical & Materials Systems Lab, General Motors Global Research and Development, 30500 Mound Rd. Warren, MI 48090, United States

³ Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, United States

⁴ Greenhouse Gas Resources Research Group, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea

KEYWORDS: CO oxidation, cerium zirconium copper oxide, thermal stability, hydrothermal aging, diesel oxidation catalyst

1. XRD

X-ray diffraction of 6 samples, Cu/GMR6, Cu/C₄Z₁, CZCu, and their hydrothermally aged forms, were obtained in the 10 - 90 ° 2 theta range.

Figure S1. XRD patterns of fresh and hydrothermally aged (HTA) catalysts; (a) Cu/GMR6, Cu/C_4Z_1 and (b) CZCu.

2. Arrhenius plots

Arrhenius plots of r_{CO} were obtained with CO conversion up to 10% for Cu/GMR6 calcined at different temperatures.

Figure S2. Arrhenius plots of r_{CO} over Cu/GMR6 calcined at 673, 923, 1123 and 1223 K.