Supporting information

A review on fabricating heterostructures by layered double hydroxides for enhanced photocatalytic activities

 and Q.L. Rao ${ }^{\text {d }}$

${ }^{\text {a }}$ SHU Center of Green Urban Mining \& Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 333 Nanchen Rd., Shanghai 200444, P. R. China;
${ }^{\text {b }}$ Shanghai Institute of Materials Genome, Shanghai, No. 99 Shangda Rd., Shanghai 200444, P. R. China;
${ }^{\text {c }}$ ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
${ }^{d}$ National Supercomputing Center in Shenzhen, Guangdong, Shenzhen 51800, P. R. China.
\# These authors contributed equally.

Table S1. Lattice parameters of calculated LDHs

	a	b	c	D=c/3
$\mathrm{Mg}_{2.0} \mathrm{Al}-\mathrm{Cl}^{-}$	18.399	6.131	22.673	7.558
$\mathrm{Mg}_{2.6} \mathrm{Al}-\mathrm{Cl}^{-}$	18.410	6.172	22.628	7.543
$\mathrm{Mg}_{3.5} \mathrm{Al}-\mathrm{Cl}^{-}$	18.427	6.181	22.766	7.589
$\mathrm{Mg}_{2.0} \mathrm{Al}-\mathrm{NO}_{3}{ }^{-}$	18.297	6.143	25.314	8.438
$\mathrm{Zn}_{2.0} \mathrm{Al}-\mathrm{Cl}^{-}$	18.674	6.268	22.578	7.526
$\mathrm{Mg}_{24} \mathrm{Al}_{9} \mathrm{Ti}_{3}-\mathrm{Cl}^{-}$	18.535	6.178	22.503	7.501
$\mathrm{Mg}_{24} \mathrm{Al}_{11} \mathrm{Ti}^{-\mathrm{Cl}^{-}}$	18.468	6.153	22.708	7.569
$\mathrm{Mg}_{2.0} \mathrm{Cr}^{-\mathrm{Cl}^{-}}$	18.439	6.253	22.800	7.600

Figure S1. Conversion relation between absolute vacuum energy scale (V/AVS) and normal hydrogen electrode (V/NHE).
Fermi level (eV) is electrochemical potential of electron on electrode; E_{CB} is conduction band edge; $E_{V B}$ is valence band edge; E_{g} is band gap; E_{F} is Fermi level; LUMO is lowest unoccupied molecular orbital; HOMO is highest occupied molecular orbital. ${ }^{1-7}$

The band gaps from KS-DFT+U were not directly related to any actual measurements. Such band gaps as "eigenvalue gaps", which were the difference between LUMO and HOMO in KS (Kohn-Sham) eigenvalues. Energy zero was set to the Fermi energy during calculation of DOS. The positions of $E_{V B}$ and $E_{C B}$ with respect to the normal hydrogen electrode (NHE) were computed according to Eq.1-4.
$E_{C B}=X-0.5 E_{g}+E_{0}$
Eq. 1
$\mathrm{E}_{\mathrm{VB}}=\mathrm{X}+0.5 \mathrm{E}_{\mathrm{g}}+\mathrm{E}_{0}$
Eq. 2
$X=\left(X_{B}^{b} \chi_{C}^{c}\right)^{1 /(b+c)}$
Eq. 3
$\chi=\frac{E_{1}+E_{A}}{2}$
Where E_{g} was the band gap energy; $\mathrm{E}_{0}=-4.5 \mathrm{eV}$ for normal hydrogen electrode; X was the electronegativity of solid material (such as $\mathrm{B}_{\mathrm{b}} \mathrm{C}_{\mathrm{c}}$ compound), which was expressed as the geometric mean of absolute electronegativity of the constituent atoms. The absolute electronegativity of each atom was obtained from other literatures $;^{8,9} \chi_{\mathrm{B}}$ and χ_{C} were the absolute electronegativity of atoms B and C. E_{1} and E_{A} were the ionization energy and electric affinity of atom.

Besides, electrostatic potential of $\mathrm{Zn}_{2} \mathrm{Al}-\mathrm{LDH}(001)$ surface was calculated by DFT+U. There was a $15 \AA$ A of vacuum region on the surface, where the electrostatic potential energy was set to zero to set the vacuum level. The position of valence-band as $\mathrm{E}_{\text {vi(vacuum) }}$ can be obtained using the Fermi level and the vacuum level. The difference of E_{VB} and $\mathrm{E}_{\mathrm{VB} \text { (vacuum) }}$ was around 0.3 eV . Therefore, above calculations were convincing.

References

1. Y. Xu and M. A. Schoonen, Am Mineral, 2000, 85, 543-556.
2. R. Asahi, T. Morikawa, H. Irie and T. Ohwaki, Chem Rev, 2014, 114, 9824-9852.
3. A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, Electrochemical methods: fundamentals and applications, wiley New York, 1980.
4. J. Bao, S. Guo, J. Gao, T. Hu, L. Yang, C. Liu, J. Peng and C. Jiang, RSC Adv, 2015, 5, 97195-97204.
5. Z. Zhang, W. Wang, L. Wang and S. Sun, ACS Appl Mater Interfaces, 2012, 4, 593-597.
6. G. Dai, J. Yu and G. Liu, J Phys Chem C, 2012, 116, 15519-15524.
7. M. C. Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao and E. A. Carter, Phys Chem Chem Phys, 2011, 13, 16644-16654.
8. W.M. Haynes, CRC Handbook of Chemistry and Physics, 95th Edition, Crc Press, 2014, 257(6), 423.
9. P.D. Burrow, J. A. Michejda, J. Comer, J Phys B: At Mol Phys, 2001, 9(18), 32253236.
