Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting information

A review on fabricating heterostructures by layered double hydroxides for enhanced photocatalytic activities

M.J. Wu,^{a,#} J.Z. Wu,^{a,#} J. Zhang,^{*,a,b} H. Chen,^a J.Z. Zhou,^a G.R. Qian,^{**,a} Z. P. Xu,^c Z. Du,^d and Q.L. Rao ^d

^a SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and

Chemical Engineering, Shanghai University, No. 333 Nanchen Rd., Shanghai 200444,

P. R. China;

^b Shanghai Institute of Materials Genome, Shanghai, No. 99 Shangda Rd., Shanghai

200444, P. R. China;

^c ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;

^d National Supercomputing Center in Shenzhen, Guangdong, Shenzhen 51800, P. R. China.

[#] These authors contributed equally.

Table S1. Lattice parameters of calculated LDHs

	а	b	С	D=c/3
Mg _{2.0} Al-Cl ⁻	18.399	6.131	22.673	7.558
Mg _{2.6} Al-Cl⁻	18.410	6.172	22.628	7.543
Mg _{3.5} Al-Cl ⁻	18.427	6.181	22.766	7.589
Mg _{2.0} Al-NO ₃ ⁻	18.297	6.143	25.314	8.438
Zn _{2.0} Al-Cl⁻	18.674	6.268	22.578	7.526
Mg₂₄Al9Ti3-Cl⁻	18.535	6.178	22.503	7.501
Mg₂₄Al₁₁Ti-Cl⁻	18.468	6.153	22.708	7.569
Mg _{2.0} Cr-Cl⁻	18.439	6.253	22.800	7.600

Figure S1. Conversion relation between absolute vacuum energy scale (V/AVS) and normal hydrogen electrode (V/NHE).

Fermi level (eV) is electrochemical potential of electron on electrode; E_{CB} is conduction band edge; E_{VB} is valence band edge; E_g is band gap; E_F is Fermi level; LUMO is lowest unoccupied molecular orbital; HOMO is highest occupied molecular orbital.¹⁻⁷

The band gaps from KS-DFT+U were not directly related to any actual measurements. Such band gaps as "eigenvalue gaps", which were the difference between LUMO and HOMO in KS (Kohn-Sham) eigenvalues. Energy zero was set to the Fermi energy during calculation of DOS. The positions of E_{VB} and E_{CB} with respect to the normal hydrogen electrode (NHE) were computed according to Eq.1-4.

$$E_{CB} = X - 0.5E_{g} + E_{0}$$
 Eq.1

 $E_{VB} = X + 0.5E_g + E_0 \qquad Eq.2$

 $X = (\chi_B^b \chi_C^c)^{1/(b+c)}$ Eq.3

Where E_g was the band gap energy; E_0 =-4.5 eV for normal hydrogen electrode; X was the electronegativity of solid material (such as B_bC_c compound), which was expressed as the geometric mean of absolute electronegativity of the constituent atoms. The absolute electronegativity of each atom was obtained from other literatures;^{8,9} χ_B and χ_C were the absolute electronegativity of atoms B and C. E_I and E_A were the ionization energy and electric affinity of atom.

Besides, electrostatic potential of Zn₂Al-LDH (001) surface was calculated by DFT+U. There was a 15 Å of vacuum region on the surface, where the electrostatic potential energy was set to zero to set the vacuum level. The position of valence-band as $E_{VB(vacuum)}$ can be obtained using the Fermi level and the vacuum level. The difference of E_{VB} and $E_{VB(vacuum)}$ was around 0.3 eV. Therefore, above calculations were convincing.

References

- 1. Y. Xu and M. A. Schoonen, *Am Mineral*, 2000, **85**, 543-556.
- 2. R. Asahi, T. Morikawa, H. Irie and T. Ohwaki, *Chem Rev*, 2014, **114**, 9824-9852.
- 3. A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, *Electrochemical methods: fundamentals and applications*, wiley New York, 1980.
- J. Bao, S. Guo, J. Gao, T. Hu, L. Yang, C. Liu, J. Peng and C. Jiang, *RSC Adv*, 2015, 5, 97195-97204.
- 5. Z. Zhang, W. Wang, L. Wang and S. Sun, ACS Appl Mater Interfaces, 2012, 4, 593-597.
- 6. G. Dai, J. Yu and G. Liu, *J Phys Chem C*, 2012, **116**, 15519-15524.
- 7. M. C. Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao and E. A. Carter, *Phys Chem Chem Phys*, 2011, **13**, 16644-16654.
- 8. W.M. Haynes, *CRC Handbook of Chemistry and Physics, 95th Edition,* Crc Press, 2014, **257(6)**, 423.
- 9. P.D. Burrow, J. A. Michejda, J. Comer, *J Phys B: At Mol Phys*, 2001, **9(18)**, 3225-3236.