Electronic Supplementary Information (ESI)

Au-Pd NPs immobilised on nanostructured ceria and titania: impact of support morphology on the catalytic activity for selective oxidation

Motaz Khawaji, and David Chadwick*

Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK

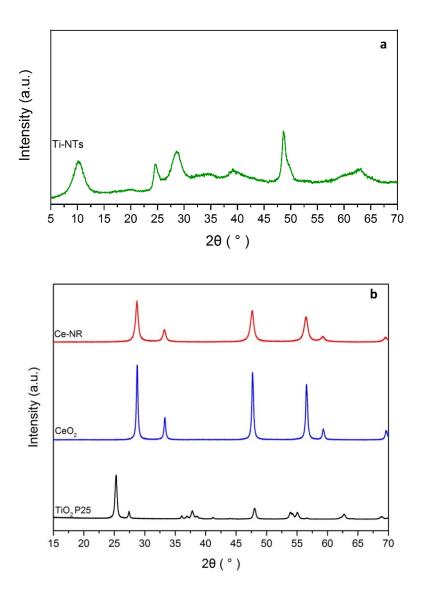


Figure S1. X-ray powder diffraction patterns of Ti-NTs (a) and Ce-NRs, CeO₂ and TiO₂ P25 nanopowders (b).

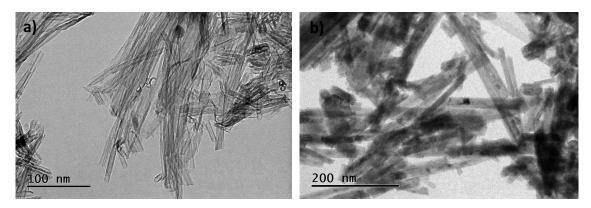
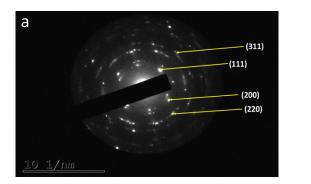
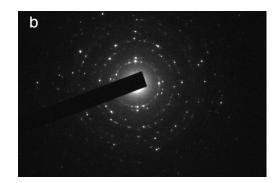




Figure S2. TEM images of a) Ti-NTs, and b) Ce-NRs.

Figure S3. Selected area electron diffraction (SAED) patterns for (a) Ce-NR and (b) CeO_2 obtained with the JEOL JEM-2100F. The ring patterns confirms the polycrystalline nature of the as-Ce-NR and CeO_2 nanopowder. The rings are indexed against the CeO_2 fluorite structure.

Table S1. Textural properties determined from N_2 adsorption-desorption measurements.

Support	SBET (m ² /g)	Pore volume (cm ³ /g)	Pore diameter (nm)
Ti-NT	236	0.51	7.7
Ce-NR	61.7	0.34	17.3

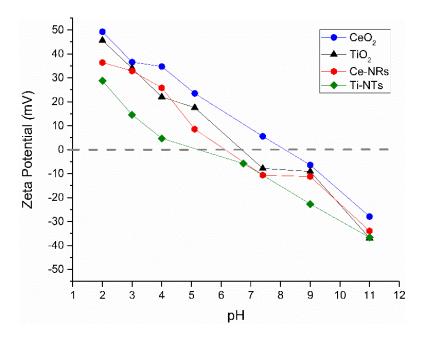


Figure S4. Zeta potential as a function of pH for Ce-NRs, CeO₂ nanopowders, Ti-NTs, and TiO₂ P25.

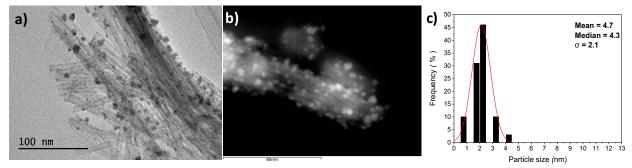
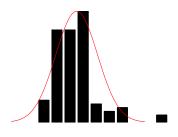



Figure S5. a) TEM image, b) STEM image for Au-Pd/Ti-NT, and c) corresponding particle size distribution.

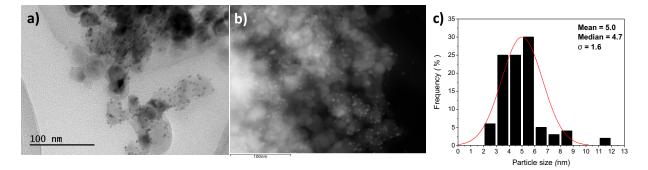


Figure S6. a) TEM image, b) STEM image for Au-Pd/TiO₂, and c) corresponding particle size distribution.

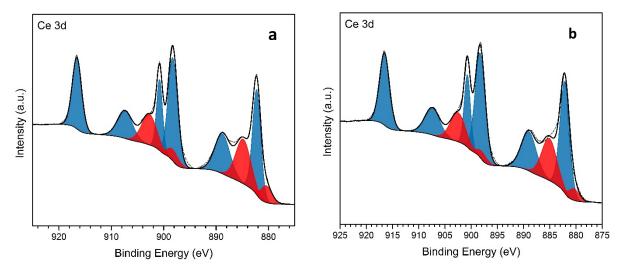


Figure S7. XPS spectra of Ce 3d for (a) Ce-NR and (b) CeO₂ nanopowder.

Table S2. Concentration of Ce	³⁺ and O species for the ceria supports from XPS.
-------------------------------	--

Support	Ce ³⁺ (at.%) ^a	O_{α} (at.%) ^b	O_{β} (at.%) ^b	O_{γ} (at.%) ^b
Ce-NR	31.0	61.7	35.2	3.0
CeO ₂	27.3	77.5	20.1	2.2

^a Determined from the Ce 3d XPS spectra.

^b Determined from the O1s XPS spectra.

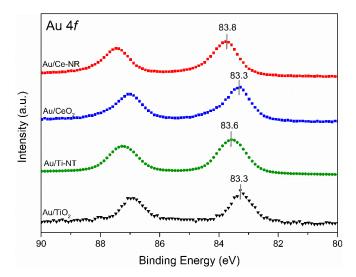
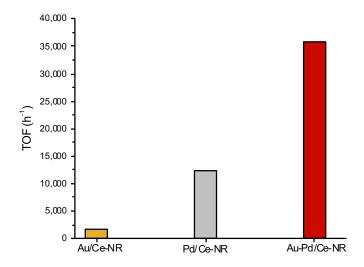



Figure S8. XPS spectra of Au 4f for monometallic catalyst samples Au/Ce-NR, Au/CeO₂, Au /Ti-NT and Au-Pd/TiO₂

Figure S9. TOF (h^{-1}) for monometallic and bimetallic catalysts prepared by sol-immobilisation. Reaction conditions: T= 120°C, pO₂= 2 bar, stirring rate=1,000 rpm, molar ratio of benzyl alcohol/metal = 50,000. TOF calculated after 0.5 hour.