Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles

Qilu Yao,# Kun Yang,# Xiaoling Hong, Xiangshu Chen* and Zhang-Hui Lu*

Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China.

*#These authors contributed equally to this work.*Email: cxs66cn@jxnu.edu.cn; luzh@jxnu.edu.cn*

Step	Condition	рН
1	Before reduction of metals	5.3
2	After reduction by NaBH ₄ (20 mg)	10.0
3	After addition of NaOH (1 M)	13.65
4	After addition of NH ₃ BH ₃ (1 mmol)	13.65
5	After release of 3.0 equivalent of gases	13.52

Table S1 The pH values of the solution at different steps of the preparation of the $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs and the hydrolysis of AB catalyzed by this catalyst.

Additive	рН
Without addition additive	10.2
After addition NaOH	13.65
After addition KOH	13.65
After addition Na ₂ CO ₃	11.0
After addition NH ₄ Cl	8.1
After addition CH ₃ COONH ₄	8.4
After addition NH ₃ ·H ₂ O (2 mL)	11.3

Table S2 The pH values of the reaction solution by add different additives before thehydrolysis of AB.

Fig. S1 TEM images of CuCo NPs.

Fig. S2 EDX spectrum of $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs.

Fig. S3 Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) catalyzed by (a) $(Cu_xCo_{1-x})_{0.9}Mo_{0.1}$ NPs and (c) $(Cu_{0.8}Co_{0.2})_yMo_{1-y}$ NPs at 298 K; (b,d) the corresponding TOF values ($n_{metal} = 0.04$ mmol).

Fig. S4 Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) in the presence of 1 M (a) NaOH, (b) KOH, (c) Na₂CO₃, (d) NH₄Cl, (e) CH₃COONH₄, and (f) NH₃·H₂O (2 mL) at 298 K.

No hydrogen generation is observed for NaOH, KOH, Na₂CO₃, NH₄Cl, CH₃COONH₄, and NH₃·H₂O toward the hydrolysis of AB in the absence of $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs (Fig. S4), suggesting that these additives have no catalytic activity for the hydrolysis of AB.

Fig. S5 (a) Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) with different molar ratios of NaOH catalyzed by $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs at 298 K and (b) the corresponding TOF values ($n_{metal} = 0.04$ mmol).

Fig. S6 (a) Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) with different molar ratios of KOH catalyzed by $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs at 298 K and (b) the corresponding TOF values ($n_{\text{metal}} = 0.04$ mmol).

Fig. S7 (a) Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) with different molar ratios of Na₂CO₃ catalyzed by $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs at 298 K and (b) the corresponding TOF values ($n_{\text{metal}} = 0.04$ mmol).

Fig. S8 (a) Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) with different molar ratios of NH₄Cl catalyzed by $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs at 298 K and (b) the corresponding TOF values ($n_{\text{metal}} = 0.04$ mmol).

Fig. S9 (a) Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) with different molar ratios of CH₃COONH₄ catalyzed by $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs at 298 K and (b) the corresponding TOF values ($n_{\text{metal}} = 0.04$ mmol).

Fig. S10 (a) Hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) with different volumes of NH₃·H₂O catalyzed by $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs at 298 K and (b) the corresponding TOF values ($n_{\text{metal}} = 0.04$ mmol).

Fig. S11 Stability test for hydrogen generation from the hydrolysis of AB (0.20 M, 5 mL) catalyzed by $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs at 298 K ($n_{metal} = 0.04$ mmol).

Fig. S12 (a) TEM image and (b) size distribution of $Cu_{0.72}Co_{0.18}Mo_{0.1}$ NPs after the stability test.

The turnover frequency (*TOF*) reported in this work is an apparent *TOF* value based on the number of metal atoms in catalyst, which is calculated from the equation as follow:

$$TOF = \frac{n_{H_2}}{n_{metal} \times t}$$
 (S1)

Where $n_{\rm H_2}$ is the mole number of generated H₂, $n_{\rm metal}$ is the mole number of Cu+Co+Mo in catalyst and *t* is the completed reaction time in minute.