Supporting Information for

Towards the Sub-15nm CeO₂ Nanowires with Increased Oxygen Defects

and Ce³⁺ Sites for Selective Oxidation of Aniline at Room-temperature with

a Non-Noble Metal Catalyst

Anderson G. M. da Silva,¹ Daniel C. Batalha,² Thenner S. Rodrigues,³ Eduardo G. Candido,¹ Sulusmon C.

Luz,² Isabel C. de Freitas,¹ Fabio C. Fonseca,³ Daniela C. de Oliveira,⁴ Jason G. Taylor,² Susana I. Córdoba

de Torresi,¹ Pedro H.C. Camargo,^{1*} Humberto V. Fajardo^{2*}

¹Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brasil.

²Departamento de Química, Universidade Federal de Ouro Preto, 35400-000, Ouro Preto, MG,

Brasil.

³Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, 05508-000, Brasil. ⁴Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Luz Síncrotron, 13083-970, Campinas, SP, Brasil.

*Corresponding author. E-mail: <u>hfajardo@iceb.ufop.br</u> and <u>camargo@iq.usp.br</u>

Figure S1. (A-C) TEM images of sub-15 nm CeO_2 nanomaterials obtained for a hydrothermal method as a function of the CeO_2 growth time: (A) 1 h, (B) 3 h, and (C) 6 h.

Figure S2. Isotherms for sub-15 nm CeO_2 nanowires and commercial CeO_2 materials generated from the N₂-adsorption-desorption curves.

Figure S3. HRTEM (A-B) images for a single sub-15 nm CeO₂ nanowire showing the presence of several 1-2 nm mesoporous at the nanostructure surface.

Scheme S1. Main pathways for the formation of nitrosobenzene, azoxybenzene and azobenzene as products during the aniline catalytic oxidation using H_2O_2 as oxidant.

Figure S4. (A) Aniline conversion (%) and (B-C) selectivity for oxidation products as a function of number of catalytic cycles employing sub-15 nm CeO₂ nanowires (B) and commercial CeO₂ (C). Reaction conditions: 100 μ L of aniline, 150 μ L of H₂O₂, 10 mg of CeO₂ catalyst, 3 mL of acetonitrile as the solvent, 12 h of reaction and, room-temperature.

Figure S5. (A) SEM and (B) TEM images of sub-15 nm CeO_2 nanowires after the 5th catalytic cycle.

Figure S6. (A) XRD and (B-C) deconvoluted O 1s spectra for sub-15 nm CeO_2 nanowires (B) and commercial CeO_2 (C) after the stability catalytic studies.

Figure S7. (A-B) SEM and (C) STEM-HAADF, and (D) HRTEM images of CeO_2 nanocubes obtained

by a hydrothermal method at 140 °C.

Figure S8. (A) XRD, (B) TPR, and (C-D) deconvoluted Ce 3d (C) and O 1s (D) core level XPS spectra for CeO_2 nanocubes obtained by a hydrothermal method at 140 °C.