Electronic supplementary information

A comparative synthesis of ZSM-5 with ethanol and TPABr template: Distinction of Brönsted/Lewis acidity ratio and its impact on n-hexane cracking

Tong Ma, Luoming Zhang, Yu Song, Yunshan Shang, Yanliang Zhai, Yanjun Gong^{*} State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum (Beijing), Beijing 102249, China

*Corresponding author. E-mail: <u>gongyj@cup.edu.cn</u> Telephone: +86-(010)-89733066 Fax: +86-(010)-89733066

Contents

Fig. S1. XRD patterns of ZSM-5 samples prepared by EtOH and TPABr.

Fig. S2. SEM images of ZSM-5 samples prepared with TPABr

Fig. S3. BJH pore-size distribution of ZSM-5 samples prepared by (a) EtOH and (b) TPABr

Fig. S4. XRD patterns of (a) EZ-150-0.12 and (b) TZ-150-0.12 at different crystallization time

Fig. S5. SEM images of EZ-150-0.12 sample at different crystallization time

Fig. S6. SEM images of TZ-150-0.12 sample at different crystallization time

Fig. S7. Linear correlation of acid sites by different methods

Fig. S8. Change of (a) the conversion and (b) coke content with TOS over HZSM-5 samples

Fig. S9. Product selectivities with the various conversions at different TOS

Scheme S1. Proposed generation of Lewis acid by tri-coordinated Al "defect" sites and extra silanols

Table S1. Brönsted and Lewis acidity of HZSM-5 samples on literatures

Table S2. Product selectivities over HZSM-5 with similar conversion

Fig. S1. XRD patterns of ZSM-5 samples prepared by EtOH and TPABr

Fig. S2. SEM images of ZSM-5 samples prepared with TPABr

Fig. S3. BJH pore-size distribution of ZSM-5 samples prepared by (a) EtOH and (b) TPABr

Fig. S4. XRD patterns of (a) EZ-150-0.12 and (b) TZ-150-0.12 at different crystallization time

Fig. S5. SEM images of EZ-150-0.12 sample at different crystallization time

Fig. S6. SEM images of TZ-150-0.12 sample at different crystallization time

Fig. S7. Linear correlation of acid sites by different methods

Fig. S8. Change of (a) the conversion and (b) coke content with TOS over HZSM-5 samples

Fig. S9. Product selectivities with the various conversions at different TOS

Scheme S1. Proposed generation of Lewis acid by tri-coordinated A1 "defect" sites and extra silanols

Literature	Bulk Si/Al	T/°Ca	$T/^{\circ}C^{b}$	BAS/µmolg ⁻¹	LAS/µmolg ⁻¹	B/L
1	26.8	500	25	450	60	9
1	28.6		25	430	50	8.6
2	36	450	150	250	70	3.6
3	53	500	350	170	19	9.1
4	51	500	150			9.7
5	27	550	150	530	111	4.8
6	42	450	150	249	39	6.4
7°	25	400	150	97	11	8.8
			250	93	11	8.4
			350	80	11	7.3
7 ^c	40	400	150	68	11	6.2
			250	55	11	5
			350	30	11	2.7
8°	25	400	250	220	31	7.1
			350	173	24	7.2
			400	102	16	6.4
8°	40	400	250	173	39	4.4
			350	86	39	2.2
			400	24	24	1

Table S1. Brönsted and Lewis acidity of HZSM-5 samples on literatures

^a Temperature of previous activation by outgassing.

^b Temperature of the pyridine desorption.

^c The unit of acid site is a.u..

- P. Sazama, J. Dědeček, V. Gabova, B. Wichterlova, G. Spoto and S. Bordiga, J. Catal., 2008, 254, 180-189.
- T. Liang, J. Chen, Z. Qin, J. Li, P. Wang, S. Wang, G. Wang, M. Dong, W. Fan and J. Wang, ACS Catal., 2016, 6, 7311-7325.
- 3. H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J. N. Kondo and T. Tatsumi, *Appl. Catal. A*, 2012, **449**, 188-197.
- F. Schmidt, C. Hoffmann, F. Giordanino, S. Bordiga, P. Simon, W. Carrillo-Cabrera and S. Kaskel, J. Catal., 2013, 307, 238-245.
- 5. S. M. T. Almutairi, B. Mezari, E. A. Pidko, P. C. M. M. Magusin and E. J. M. Hensen, J. *Catal.*, 2013, **307**, 194-203.
- 6. K. Lee, S. Lee, Y. Jun and M. Choi, J. Catal., 2017, 347, 222-230.
- 7. T. Blasco, A. Corma and J. Martínez-Triguero, J. Catal., 2006, 237, 267-277.
- 8. A. Corma, J. Mengual and P. J. Miguel, *Appl. Catal. A*, 2012, **421-422**, 121-134.

	EZ-75-0.12	EZ-100-0.12	EZ-100-0.06	TZ-50-0.12	TZ-75-0.12	TZ-100-0.12
BAS ^a	131	98	89		98	84
LAS ^a	2	2	2		13	14
Cov./% ^b	97.35	97.38	96.61	97.47	97.35	96.51
C_{1-4} /%	36.73	35.87	35.38	38.73	36.64	35.58
$C_2^{=/0/0}$	21.97	21.83	20.99	21.38	20.59	20.82
C ₃ =/%	27.96	28.83	30.32	25.76	28.64	30.12
$C_4 = -0/0$	7.98	8.63	8.90	7.48	8.45	8.82
BTX/%	3.56	3.18	2.47	5.09	4.01	2.72
P/O ^c	0.63	0.61	0.59	0.71	0.64	0.60

Table S2. Product selectivities over HZSM-5 with similar conversion

 a BAS and LAS at 350°C, $\mu molg^{-1}.$

^b Conversion at 0.5h by adjusting WHSV.

^c P/O stands for paraffin/olefin ratio.