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13C-NMR and GC data for identification of 3-deoxy and 6-deoxy hexitols is shown
in Figure S-1, S-2, S-3, S-4, and S-5.
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Figure S-1: Identification of 3-deoxy hexitols (1,2,4,5,6-hexanepentols) by *3C-NMR analysis (DEPT) in compari-
son with 3-deoxy tetritols (1,2,4-butanetriol, a standard purchased from Sigma-Aldrich as reference). Carbon
atoms with one or three C-H bonds are facing down from the base line, while carbon atoms with two C-H bonds
face upwards. The 3-deoxy hexitol shows four different isomeric carbon atoms at the 3-position that result from
three chiral carbon atoms (32 = 8 diastereomers: however, enantiomers are not separated which results in four

visible diastereomers). The corresponding GC chromatogram is shown in Figure S-2.
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Figure S-2: GC chromatogram of the polyol mixture that was analyzed by NMR analysis for identification of the 3-
deoxy hexitols (1,2,4,5,6-hexanepentols). The polyol mixture was isolated by chromatography from a reaction
mixture resulting from hydrogenolysis of sorbitol using a Cu-Raney catalyst at 180 °C, 150 bar Hz and 5 h reaction
time (Figure S-3). Four different monodeoxy hexitols are detected at about 7.4 min retention time, which are

identified as 3-deoxy hexitols by 13C-NMR analysis (see Figure S-1).
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Figure S-3: GC chromatogram for the conversion of mannitol over Cu-Raney at 180 °C, 150 bar H2 and 5 h reac-
tion time. Four stereoisomers of 3-deoxy hexitols (1,2,4,5,6-hexanepentols) are detected at a retention time of 8.5

to 8.6 min. Six stereoisomers of 6-deoxy hexitols (1,2,3,4,5-hexanepentols) are detected at 8.0 to 8.3 min. The

same 6-deoxy stereoisomers are obtained from rhamnose hydrogenation as shown in Figure S-4.
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Figure S-4: GC chromatogram of the product mixture obtained from rhamnose hydrogenation to 6-deoxy hexitols

(1,2,3,4,5-hexanepentols, catalyst: Cu-Raney at 70 °C and 150 bar H2) and subsequent hydrogenolysis at 180 °C,

no

(s)uexboyewory) 2juax

150 bar Hz and 5 h reaction time. Six different stereocisomers of 6-deoxy hexitols are formed from the 6-deoxy

sugar rhamnose.
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Figure S-5: GC-MS analysis of the polyol mixture shown in Figure S-3. 3-deoxy and 6-deoxy hexitols (labeled as

Desoxyhexitole) are detected with a mass-to-charge-ratio of 527 m/z which accounts for the M+1 form (with an

added proton) of the TMS-derivatives (see experimental section for silylation). The M+1 species of the 3,4-deoxy

and 3,6-deoxy hexitols (as Didesoxyhexitole) are detected with a 439 m/z ratio.



13C-NMR and GC data for identification of 3,4-deoxy hexitols (1,2,5,6-hexane-
tetrol) is shown in Figure S-6, S-7, and S-8.
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Figure S-6: Identification of the 3,4-dideoxy hexitol (1,2,5,6-hexanetetrol) by 13C-NMR analysis (DEPT). Carbon
atoms with one or three C-H bonds are facing down from the base line, while carbon atoms with two C-H bonds
face upwards. The 1,2,5,6-hexanetetrol shows two different isomeric carbon atoms for each position in the mole-
cule that result from two chiral carbon atoms (22 = 4 diastereomers: however, enantiomers are not separated

which results in two visible diastereomers). The GC chromatogram is shown in Figure S-7.
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Figure S-7: GC chromatogram of the polyol mixture that was analyzed by NMR analysis for identification of the

3,4-deoxy hexitols (1,2,5,6-hexanetetrol). The polyol was isolated by chromatography from a reaction mixture

resulting from hydrogenolysis of sorbitol using a Cu-Raney catalyst at 180 °C, 150 bar H2 and 40 h reaction time.

The 3,4-deoxy hexitol (1,2,5,6-hexanetetrol) is detected at a retention time of 6.8 min and was identified by NMR

analysis as shown in Figure S-6.
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Figure S-8: GC chromatogram for the conversion of mannitol over Cu-Raney at 180 °C, 150 bar H2 and 40 h

reaction time. The 3,4-deoxy hexitol (1,2,5,6-hexanetetrol) is detected at a retention time of 6.6 min. The polyol

mixture shown in Figure S-7 was obtained by chromatographic separation from this aqueous polyol solution.



13C-NMR and GC data for identification of 3,6-deoxy hexitols (1,2,4,5-hexane-
tetrol) is shown in Figure S-9, S-10, and S-11.
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Figure S-9: Identification of the 3,6-dideoxy hexitol (1,2,4,5-hexanetetrol) along with 1,2,4-butanetriol and glycerol

—p—- R -y

by ¥C-NMR analysis (DEPT). Carbon atoms with one or three C-H bonds are facing down from the base line,
while carbon atoms with two C-H bonds face upwards. 1,2,4,5-hexanetetrol shows four different isomeric carbon
atoms for each position in the molecule that result from three chiral carbon atoms (23 = 8 diastereomers: however,
enantiomers are not separated which results in four visible diastereomers). The GC chromatogram is shown in
Figure S-10.
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Figure S-10: GC chromatogram of the polyol mixture that was analyzed by NMR analysis for identification of the
3,6-deoxy hexitols (1,2,4,5-hexanetetrols). The polyols were isolated by chromatography from a reaction mixture
resulting from hydrogenolysis of rhamnose over a Cu-Raney catalyst at 180 °C, 150 bar H2 and 20 h reaction
time. The 3,6-deoxy hexitols are detected at a retention time of 7.0 to 7.2 min and were identified by NMR analy-

sis as shown in Figure S-9.
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Figure S-11: GC chromatogram for a polyol solution obtained from rhamnose hydrogenolysis over Cu-Raney at

180 °C, 150 bar Hz and 20 h reaction time. Three peaks for 3,6-deoxy hexitols (1,2,4,5-hexanetetrols) are detect-

ed at a retention time of 6.0 to 6.2 min. The peak in the middle is twice as large as the two others which is a clear

indication that two stereoisomers are co-eluted which means that four stereoisomers are formed. This is in line

with the detected four stereoisomers in NMR analysis as shown in Figure S-9. The same three 3,6-deoxy hexitols

are obtained as intermediate products from hexitols (Figure S-3 and Figure S-5).
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13C-NMR and GC data for identification of the hexanetriols (1,2,5-, 1,2,6-, and
1,4,5-hexanetriol) is shown in Figure S-12, S-13, S-14, and S-15.
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Figure S-12: Identification of the two hexanetriol isomers 1,2,5-hexanetriol and 1,4,5-hexanetriol along with 1,2-

propanediol by *C-NMR analysis (DEPT). Carbon atoms with one or three C-H bonds are facing down from the

base line, while carbon atoms with two C-H bonds face upwards. Both hexanetriols show two different isomeric

carbon atoms for each position in the molecule that result from two chiral carbon atoms (22 = 4 diastereomers:

however, enantiomers are not separated which results in two visible diastereomers). The GC chromatogram is

shown in Figure S-13.

13



Current Chromatogram(s)

FID1 A Fronl Signal (RAZAFES GUGLTE00_2 20161 BRVWAG BRVVADD1 490040k D)
oA ¥
4
1 ]
N %
100 - ui
; OH OH
3 3
80 HO™ ™ ¢ HO i
OH | OH
' 1,4,5-hexanetriol 1,2,5-hexanetriol
w-
40—
;
w
o
20-
£
% ;
a8 9
(1] : J_g._ tt .';
3 H 5 6 7 8 ® e

Figure S-13: GC chromatogram of the polyol mixture that was analyzed by NMR analysis for identification of the
1,2,5- and 1,4,5-hexnaetriols. The polyols were isolated by chromatography from a reaction mixture resulting from
mannitol hydrogenolysis over Cu-Raney at 180 °C, 150 bar Hz and 40 h (Figure S-8). The hexanetriols are de-
tected at a retention time of 5.9 to 6.1 min and were identified by NMR analysis as shown in Figure S-12. Three
peaks are detected, similar to the reaction mixture shown in Figure S-8 at a retention time of 5.2 min. The first
two peaks are partly co-eluted (no base line separation) which indicates that the two compounds are stereoiso-

mers. Figure S-14 and Figure S-15 show that the co-eluted stereoisomers are the 1,4,5-hexanetriol.
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Figure S-14: Identification of the two hexanetriol isomers 1,2,6-hexanetriol and 1,4,5-hexanetriol along with 1,2-

butanediol by 3C-NMR-analysis (DEPT). Carbon atoms with one or three C-H bonds are facing down from the

base line, while carbon atoms with two C-H bonds face upwards. The GC chromatogram is shown in Figure S-13.
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Figure S-15: GC chromatogram of the polyol mixture that was analyzed by NMR analysis for identification of the
1,2,6- and 1,4,5-hexanetriols (Figure S-15). The polyols were isolated by chromatography from a reaction mixture
resulting from hydrogenolysis of mannitol using a Cu-Raney catalyst at 180 °C, 150 bar Hz and 40 h reaction time
as shown in Figure S-8. 1,4,5- and 1,2,6-hexanetriols are the main components and detected at a retention time
of about 5.5 and 5.9 min, respectively. The 1,2,6-hexanetriol was identified using a standard reference, purchased

from Sigma-Aldrich.
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GC-MS data for identification of saccharinic acids (deoxy aldonic acid)
shown in Figure S-16.
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Figure S-16: Identification of saccharinic acids with a mass of 541,2 m/z for the TMS-derivated molecule (OH-
groups protected with trimethylsilyl-groups, see chapter Fehler! Verweisquelle konnte nicht gefunden
werden.) via GC-MS. The mass-to-charge-ratio only fits a deoxygenated aldonic acid (saccharinic acid, M+1 ion
after addition of a proton) and is only detected in the product mixture. Hence, formation of an unknown artifact

from hexitols or sugars such as glucose or fructose can be excluded.
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Figure S-17: Verification of formic acid (at 11 min retention time), acetic acid (15,5 min), and lactic acid formation
(12 min) with HPLC-analysis. One additional unidentified acid is detected at a retention time of 10 min. The prod-
uct mixture was obtained from mannitol hydrogenolysis over Cu-Raney at 180 °C without H2 atmosphere (instead

25 bar N2 were used) and 5 h reaction time.
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The selective formation of 3-deoxy polyols after the first -C-O- bond cleavage is a
strong indication that the deoxygenation reaction is metal-catalyzed as shown in Fig-
ure 8 and Figure 11 in the revised manuscript. Another known pathway for the for-
mation of deoxy compounds is dehydrogenation to unsaturated intermediates and
dehydration as shown in Figure S-18. This route is most commonly proposed for
-C-O- hydrogenolysis from glycerol to 1,2-propanediol [12,16,23]. In fact, 3-deoxy
hexitols could be formed along this pathway as well. The predominant unsaturated
species after adsorption has to be the 2-keto (or 5-keto) intermediate. We conclude
this from the product distribution shown in Figure 1 which clearly shows that the ma-
jor side products are C3 polyols, in particular glycerol. Cleavage between the C3 and
C4 bond, which yields two equivalents of glycerol, can only occur via such a 2-keto
(or 5-keto) polyol. However, the adaptation of this dehydrogenation/dehydration
pathway is not possible for the selective -C-O- bond cleavage of pentitols and tetri-
tols. This route would lead to 4-deoxy products from such 2-keto (or 5-keto) interme-
diates. However, hydrogenolysis of tetritols (e.g. erythritol) and pentitols (e.g. xylitol)
reveals that 3-deoxy products are formed after the first -C-O- bond cleavage step as
shown in Figure 15 in the revised manuscript. Hence, deoxygenation over Cu seems

to be a metal-catalyzed reaction.
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