Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

1. Experimental Section

1.1 Catalyst preparation

The carbon nanotubes (CNTs) used were multi-walled carbon nanotubes (purchased from Chengdu Organinc Chemicals Co. Ltd.). And more information regarding the CNTs was listed in Table S1. The Mo₂C nanoparticles supported by CNTs were prepared in two steps. In the first step, two kinds of precursors for Mo₂C/CNTs with theoretical loadings of 30 wt% Mo were prepared by incipient wetness impregnation method and mechanical mixing method, respectively. The former was prepared via stirring CNTs in an aqueous solution of (NH₄)₆Mo₇O₂₄·4H₂O, followed by sonicating for about 30 min, and then dried in air at 70 °C for overnight. The latter was prepared by mixing (NH₄)₆Mo₇O₂₄·4H₂O and CNTs powders mechanically. In the second step, these precursors were heated in a quartz reactor under a flow of Ar (50 ml min⁻¹). The temperature was increased linearly at a rate of 10 °C min⁻¹ from room temperature (RT) to 850 °C, followed by cooling to RT under Ar flow. Then, the products were taken out for further use. In addition, unsupported Ni(Co)/Mo₂C and CNTs supported Ni(Co)/Mo₂C catalysts were also obtained in this study. The unsuppored samples were prepared based on the method reported before.²⁸ In the case of the CNTs supported samples, their precursors with theoretical loadings of 30 wt% Mo and a ratio of M:Mo=1:2 (M=Ni or Co) were prepared by two-step impregnation method

with a Mo-first impregnation sequence and the carburization procedures were similar to those for the Mo₂C/CNTs mentioned above.

Index	Value		
Purity (wt%)	>98		
Inner diameter (nm)	5-15		
Outer diameter (nm)	>50		
Length (µm)	<10		
Specific surface area (m ² g ⁻¹)	>60		
Tap density (g cm ⁻³)	0.18		
True density (g cm ⁻³)	~2.1		
The content of metal impurity: Fe, Ni,	≤200, ≤1000, ≤100, ≤100, <500,		
Co, Zn, Mg, Cu, Al, Ca, Cr, Mo, Mn,	<100, <100, <1000, <50, <50, <50,		
Na (ppm)	<500		

Table S1 The detailed information regarding the carbon nanotubes provided by the company.

1.2 Catalyst characterization

X-ray diffraction (XRD) was conducted using an X-ray diffractometer (X'Pert Pro MPD) equipped with a Cu K α source. X-ray photoelectron spectroscopy (XPS) was carried out using a Kratos Axis ultra (DLD) equipped with Al K α Xray source. The binding energies (±0.2 eV) were referenced to the C 1s peak at 284.8 eV due to adventitious carbon. BET surface areas of the samples were measured by a surface area analyzer (NOVA4200). TEM images were acquired using a transmission electron microscope (Philips Tecnal 10). Raman spectroscopy was performed using a Horrba/Jobin-Yvon LABRAM-HR spectrometer with the 632.8 nm line of a helium-neon laser as excitation source. Carbon dioxide temperature-programmed oxidation (CO₂-TPO) and methane temperatureprogrammed surface reaction (CH₄-TPSR) studies were performed using a flow of 5%CO₂(2%CH₄)/Ar (50 ml min⁻¹). Prior to the reaction, the sample was heated to 850 °C under Ar, followed by cooling to RT under Ar, and then was heated under the reactant gas from RT to 850 °C at a rate of 10 °C min⁻¹. The evolution of gasphase products during reaction was monitored using gas chromatography (GC).

1.3 Catalyst performance tests

Catalytic activities of carbides for DRM were evaluated in a micro-reactor with an inner diameter of 10 mm at atmospheric pressure. Prior to the reaction, the sample was preheated with Ar (H₂) at 850 °C (650 °C) for 30 min. Then CH₄ and CO₂ mixture with a mole ratio of 1:1 was allowed to pass through the catalyst (60-80 mesh) at a flow rate of 30 ml min⁻¹ (WHSV=18000 cm³ g⁻¹ h⁻¹). The products were analyzed by on-line gas chromatography (GC). The conversions of CH₄ and CO₂, selectivity of H₂ and carbon balance were defined respectively as follows: CH₄ conversion (%)= (moles of CH₄ converted)/(moles of CH₄ introduced); CO₂ conversion (%)= (moles of CO₂ converted)/(moles of CO₂ introduced); H₂ selectivity (%)= (moles of H₂ produced)/(2× moles of CH₄ converted); carbon balance (%)=(moles of CO₂ in products + moles of CH₄ in products + moles of CO produced)/(moles of CO₂ introduced + moles of CH₄ introduced).

2. Results

Table S2 Textural properties of Mo₂C/CNTs samples obtained in this study.

$S_{\rm BET} ({ m m}^2~{ m g}^{-1})$	$D_{\mathrm{P}}\left(\mathrm{nm}\right)$	$V_{\rm P} ({\rm cm}^3{\rm g}^{-1})$
75.2	52.26	0.98
66.0	53.57	0.81
	$\frac{S_{\text{BET}} (\text{m}^2 \text{g}^{-1})}{75.2}$ 66.0	$S_{\rm BET}$ (m ² g ⁻¹) $D_{\rm P}$ (nm)75.252.2666.053.57

 $\overline{S_{\text{BET}}}$ =BET surface area; D_{P} =Average pore diameter; V_{P} =Total pore volume.

Fig. S1 TEM images of Mo₂C-in-CNTs (a-b) and Mo₂C-out-CNTs (c-d).

Fig. S2 Lifetime study of Mo₂C-out-CNTs and Mo₂C-in-CNTs catalysts in DRM (T=850 °C, P=1 atm, CH₄/CO₂=1, WHSV=18000 cm³ g⁻¹ h⁻¹).

Fig. S3 XRD patterns of Ni/Mo₂C-in-CNTs and Co/Mo₂C-in-CNTs samples as well as CNTs support for comparison.

Fig. S4 XPS spectra of Mo 3d, Ni 2p and Co 2p (a) Ni/Mo₂C-in-CNTs; (b) Co/Mo₂C-in-CNTs.

Fig. S5 TEM image of Ni/Mo_2C -in-CNTs (a) and corresponding HRTEM images (b-d).

Fig. S6 TEM image of Co/Mo₂C/CNTs (a) and corresponding HRTEM images (b-d).

Fig. S7 Lifetime of Ni(Co)/Mo₂C-in-CNTs in DRM as well as that of Mo₂C-in-CNTs for comparison (T=850 °C, P=1 atm, CH₄/CO₂=1, WHSV=18000 cm³ g⁻¹ h⁻¹).