Bio-oil upgrading via vapour phase acetic acid ketonisation over zirconia

Hessam Jahangiri, ^{ab} Amin Osatiashtiani,^a James A. Bennett,^a Mark A. Isaacs,^a Sai Gu,^c Adam F. Lee^d and Karen Wilson ^{d*}

^a European Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK.

^b Cranfield University, Whittle Building, Cranfield, Bedfordshire MK43 0AL, UK.

^c University of Surrey, Guildford, Surrey GU2 7XH, UK.

^d School of Science, RMIT University, 124 La Trobe St, Melbourne VIC 3000, Australia

* E-mail: Karen.wilson2@rmit.edu.au

Figure S1. a) MS of main by-product formed during acetic acid ketonisation over ZrO₂ catalysts; and b) library MS of 1,2,propanediol-2-acetate.

Figure S2. a) N₂ porosimetry isotherms and b) pore size distributions of Zr(OH)₄ as a function of calcination temperature.

Figure S3. Surface O species in the form of OH with respect to total surface O content (\bullet) and hydroxide:oxide ratio calculated from the corresponding Zr 3*d* peaks (\bullet) of Zr(OH)₄ as a function of calculation temperature.

Figure S4. DRIFT spectra of $Zr(OH)_4$ as a function of calcination temperature.

Figure S5. Valence band XP spectra of Zr(OH)₄ as a function of calcination temperature.

I ap	e SI. Sunace c	omposition of z	.r(On)4 as a lu	nction of calcination	temperature from APS
	Catalyst	O / wt%	Zr / wt%	Non-hydroxyl O:Zr	Valence band / eV
	ZrO ₂ (300)	32.5	67.5	2.0	2.2
	ZrO ₂ (400)	28.4	71.6	1.8	2.4
	ZrO ₂ (600)	28.2	71.9	1.9	2.4
	ZrO ₂ (800)	27.5	72.5	1.8	2.6

 Table S1. Surface composition of Zr(OH)₄ as a function of calcination temperature from XPS.

Figure S6. DRIFT spectra of pyridine titrated Zr(OH)₄ as a function of calcination temperature.

Figure S7. Density of strong and weak acid sites Zr(OH)₄ as a function of calcination temperature determined from propylamine TPD.

Catalyst	Base site loading / mmolg ⁻¹	Base site surface loading / μ.molm ⁻²	Acid:Base loading
ZrO ₂ (300)	0.03	0.15	16.7
ZrO ₂ (400)	0.08	0.72	3.1
ZrO ₂ (600)	0.03	0.90	3.8
ZrO ₂ (800)	0.02	2.09	1.9

 Table S2. Base site loading of Zr(OH)₄ as a function of calcination temperature from CO₂ chemisorption.

Figure S8. Acetic acid conversion over $Zr(OH)_4$ as a function of calcination temperature and time onstream. Reaction conditions: 200 mg catalyst, at 400 °C, 0.2 ml min⁻¹ acetic acid, ambient pressure, 50 ml min⁻¹ N₂.

Figure S9. Relative decrease in acetic acid conversion as a function of post-reaction carbon after 8.5 h on-stream over $Zr(OH)_4$ as a function of calcination temperature Reaction conditions: 200 mg catalyst, 400 °C, 0.2 ml min⁻¹ acetic acid, ambient pressure, 50 ml min⁻¹ N₂.

Figure S10. XRD patterns for (*left*) fresh and (*right*) spent Zr(OH)₄ as a function of calcination temperature after ketonisation at temperature 400 °C.

Figure S11. Acetone selectivity from acetic acid ketonisation at 50 % ico-conversion as a function of $Zr(OH)_4$ calcination temperature. Reaction conditions: 200 mg catalyst, 400 °C, 0.1-0.4 ml.min⁻¹ acetic acid, 50 ml.min⁻¹ N₂, and ambient pressure