Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: coating thickness as the key factor influencing the efficiency and stability of the catalyst

Rui Yu^{a,b†}, Rui Liu^{a,b†}, Jie Deng^c, Maofei Ran^d, Ning Wang^e, Wei Chu^a, Zhiwei He^b, Zheng Du^f, Chengfa Jiang^{a,*}, Wenjing Sun^{b,*}

^a·China-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808, China;

^b Department of Chemical Engineering, Sichuan University, Chengdu 610065, China;

^cCollege of pharmacy and biological engineering, Chengdu University, Chengdu 610106, China;

^dCollege of Chemistry & Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China

^ePhysical Sciences and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia;

^fNational Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center), Guangdong, Shenzhen, 518055, China

[†]These authors contributed equally to this work.

*Corresponding author: jiangcf@scu.edu.cn (C. Jiang); swj_gdmc@163.com (W. Sun)

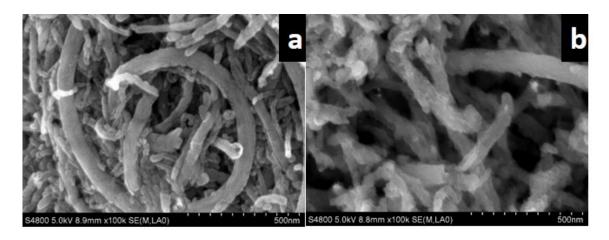
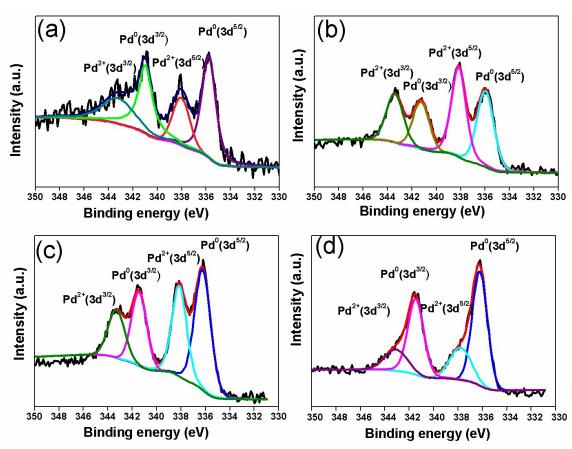



Fig. S1 SEM results of (a) CNT and CNT@PANI-0.5(b).

Fig. S2 Pd 3d core level of XPS spectra of the four catalysts. Pd/CNT(a); Pd/PANI@CNT-0.5(b); Pd/PANI@CNT-1(c); and Pd/PANI@CNT-4(d). The data point of the Pd 3d peaks are fitted by four profiles. The fitting results are shown in Table S1.

Table S1 Assignment and atomic% of the four catalysts

Two stribusgiment and attended to the round entail gold													
	Pd 3d ^{5/2}				Pd 3d ^{3/2}								
Catalysts	Pd ⁰		Pd ²⁺		Pd ⁰		Pd ²⁺						
	BE/eV	at%	BE/eV	at%	BE/eV	at%	BE/eV	at%					
Pd/CNT	335.8	68%	338.08	32%	341	58 %	343.2	42%					
Pd/PANI@CNT-0.5	336	48%	338.2	52%	341.3	48%	343.4	52%					
Pd/PANI@CNT-1	336.2	58%	338.2	42%	341.4	58%	343.3	42%					
Pd/PANI@CNT-4	336.2	71%	337.8	29%	341.5	72%	343.1	28%					

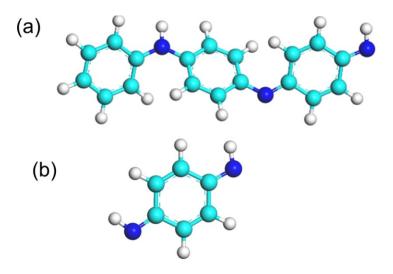


Fig. S3 Molecular structure of PANI unit(a); selected fragment of PANI in this work(b).

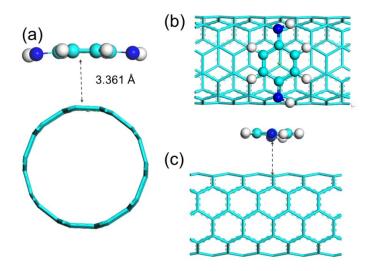
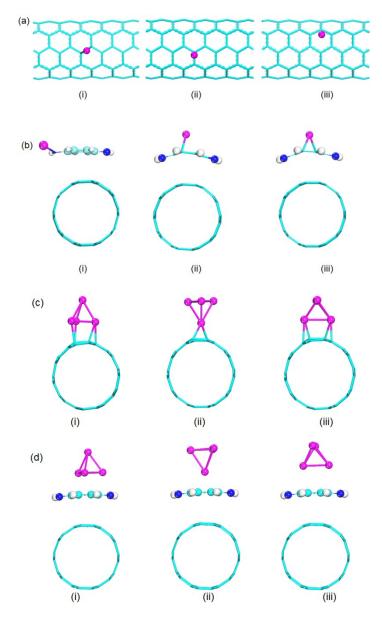
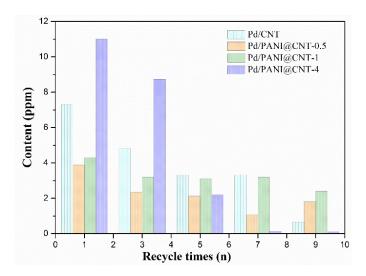
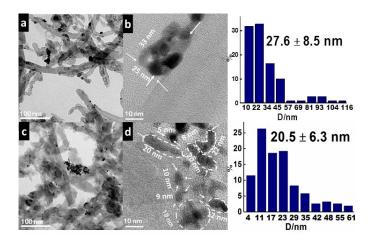



Fig. S4 Optimized structure of PANI@CNT: (a)side view (along the tube); (b)front view; (c)side view



 $\textbf{Fig. S5} \ \, \textbf{Adsorption sites of Pd on CNT(a); Adsorption sites of Pd on PANI@CNT(b); adsorption sites of Pd4 on CNT(c); adsorption sites of Pd4 on PANI@CNT(d). } \\$


Table S2 Catalytic performance of catalytic performance of different Pd based catalysts in the coupling reaction

Entry	Catalyst ¹	Temp (°C)	Time (h)	Amount (mol% Pd)	Yield ² (%)	Reus e	Final Yield (%)
1	Pd/HCN ³ [1]	120	1	0.255	1004	6 th	100
2	Pd/MFC ⁵ [2]	120	4	0.308	1004	5 th	95
3	Pd/graphene oxide [3]	Reflux	5	0.54	626	/	/
4	Pd/MCPPy ⁷ [4]	120	3	0.01 g, 21 wt%	976	5 th	/
5	PdNs-PAMAM-g-MWCNTs [5]	100	2.5	0.3	958	7 th 9	95
6	Fe ₃ O ₄ -NH ₂ -Pd [6]	130	10	5	>994,10	4 th	94
7	[Pd]-APTS-Y ¹¹ [7]	120	2	0.075 g, 4.5 wt%	954,10	3^{rd9}	94
8	PVP-Pd/SiO ₂ [8]	120	1	0.5	938	7 th 12	100
9	Pd/N-MCNPs ¹³ [9]	120	3	0.01g, 40 wt%	978,10	3 rd	97
10	PANI-Pd [10]	120	40	2.25	988	3^{rd}	90
11	Pd/PANI@CNT-0.5 ¹⁴	110	1.5	0.15	984	10 th	94
12	Pd/PANI@CNT-0.5 ¹⁴	100	2.5	0.2	95 ⁴	/	/

¹References; ²Coupling reaction of iodobenzene and styrene; ³HCN=hollow carbon nanonets; ⁴Yields were calculated against the consumption of the aryl halides; ⁵Pd/MFC=Pd nanoparticles supported on magnetic Fe₃O₄@C nanocomposites; ⁶GC Yield; ⁷MCPPy= magnetic carboxylated polypyrrole nanotubes; ⁸Isolated yields; ⁹Reaction of 4-methyl-iodobenzene and methyl acrylate; ¹⁰N₂ atmosphere; ¹¹APTS-Y=Amine-Functionalized Zeolite; ¹²Reaction of iodobenzene and n-butyl acrylate; ¹³N-MCNPs=Nitrogen-doped magnetic carbon nanoparticles; ¹⁴Reaction conditions: iodobenzene (1 mmol), styrene (1.5 mmol), NEt₃ (1.5 mmol) and 2 mL of DMF.

Fig. S6. Leached amounts of the Pd species in solvent in selected runs. Reaction conditions: The reaction was carried out with 5 mmol of IB, 7.5 mmol of styrene, 7.5 mmol of NEt₃, 0.15 mol% Pd with respect to the IB and 10 mL of DMF at 110 °C. The tested details are presented in experimental section.

Fig. S7. TEM of catalyst after recycling ten times: Pd/CNT(a,b); Pd/PANI@CNT-0.5(c,d). The used catalyst was washed with DMF, ethyl alcohol and water to remove organic compounds like stilbene.

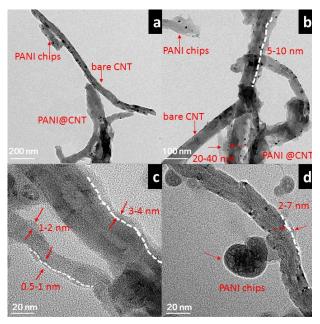


Fig. S8 TEM results of Pd/CNT@PANI-4 after five times of reuse.

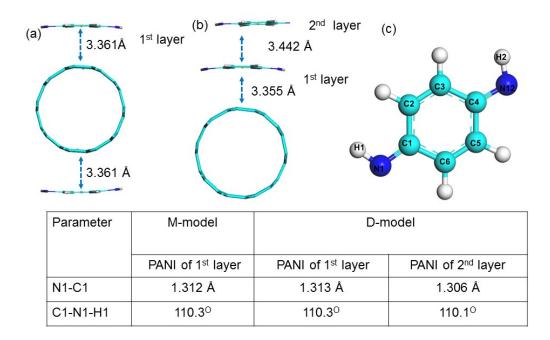
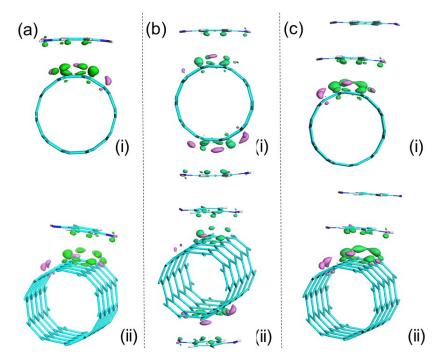



Fig. S9 Structural parameters of PANI2@CNT with M-model(a); D-model(b) and atom name of PANI fragment(c).

Fig. S10 Calculated charge density difference $\Delta \rho$ for PANI@CNT complex(a); PANI2@CNT with M-model(b); PANI2@CNT with D-model(c); front view(i); side view(ii). Iso-density surfaces for electron accumulation/depletion of 0.002 e/Å³ are displayed in green (-)/pink (+).

References

- [1] M. Zhu, Y. Wang, C. Wang, W. Li, G. Diao, Catal. Sci. Technol. 2013, 3, 952.
- [2] M. Zhu, G. Diao, J Phys. Chem. C 2011, 115 (50), 24743.
- [3] Y. V. Ioni, S. E. Lyubimov, V. A. Davankov, S. P. Gubin, *Russ. J. Inorg. Chem.* 2013, **58**, 392.
- [4] S. Ko, J. Jang, Angew. Chem. Int. Ed. 2006, 45, 7564.
- [5] M. R. Nabid, Y. Bide, S. J. Tabatabaei Rezaei, *Appl. Catal. A-Gen.* 2011, **406**, 124
- [6] F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, J. Ma, *Green Chem.* 2011, **13** (5), 1238.
- [7] S. Mandal, D. Roy, R. V. Chaudhari, M. Sastry, *Chem. Mater.* 2004, **16** (19), 3714
- [8] B. Tamami, H. Allahyari, S. Ghasemi, F. Farjadian, *J. Organomet. Chem.* 2011, **696** (2), 594.
- [9] H. Yoon, S. Ko, J. Jang, Chem. Commun. 2007, 14, 1468.
- [10] H. A. Patel, A. L. Patel, A. V. Bedekar, Appl. Org. Chem. 2014, 29, 1.