Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Synthesis of Heterogeneous Ru(II)-1,2,3-Triazole catalyst supported over SBA-15; Application to the Transfer Hydrogen reaction and unusual highly selective 1-4disbustituted traizole formation via Multicomponent Click Reaction

Priti Sharma^{#a}, Jayant Rathod^{#c}, A.P.Singh^{*b}, Pradeep Kumar^{*c} and Yoel Sasson^{*a}

^aCasali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Israel.

^bCatalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008,

^cDivision of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road,

Pune-411008, India.

[#]Equal Contribution

S.No.	Table of content			
S1	³¹ P NMR of catalyst SBA-15-Tz-Ru(II)TPP.	2		
S2	SEM-EDX analysis of (a) calcined SBA-15, (b) SBA-15-Tz-Ru(II)TPP.	3		
S3	TEM images of calcined SBA-15 at different magnification (A) 100 nm, (B)	4		
	50 nm.			
S4	TEM-EDX analysis of SBA-15-Tz-Ru(II)TPP catalyst.	5		
S5	Ru XPS result of the SBA-15-Tz-Ru(II)TPP catalyst.	6		
S6	P XPS spectrum of SBA-15-Tz-Ru(II)TPP.	7		
S7	Other possible structure for methoxy group anchoring to Si with surface OH	8		
	group.			
S 8	HR-XPS of (A) Full scan of SBA-15-Tz-Ru(II)TPP, (B) of Ru3p, (C) of	9		
	Ru3d, (D) Cl2p, (E) of P2p.			
S9	ICP Analysis	10		
S10	Analytical Data of multi component click cycloaddition products.	11		
S11	¹ H NMR & ¹³ C of Intermediate 4-phenyl-1H-1,2,3-triazole	16		

Figure S1: ³¹P NMR of catalyst SBA-15-Tz-Ru(II)TPP.

Figure S2: SEM-EDX analysis of (a) calcined SBA-15, (b) SBA-15-Tz-Ru(II)TPP.

Figure S3: TEM images of calcined SBA-15 at different magnification (A) 100 nm, (B) 50 nm.

Figure S4: TEM-EDX analysis of SBA-15-Tz-Ru(II)TPP catalyst.

Sample 3 S4								
Peak	Туре	Position BE (eV)	FWHM (eV)	Raw Area (cps eV)	RSF	Atomic Mass	Atomic Conc %	Mass Conc %
Cu 2p	Reg	930.000	2.011	1810.8	5.321	63.549	0.48	1.93
I 3d	Reg	616.600	1.543	4957.1	10.343	126.904	0.78	6.27
0 1s	Reg	530.100	1.970	10329.5	0.780	15.999	22.07	22.26
N 1s	Reg	397.900	2.699	2745.3	0.477	14.007	9.72	8.58
Ru 3d	Reg	279.400	1.508	1024.8	4.273	101.069	0.40	2.56
C 1s	Reg	282.700	2.272	9812.5	0.278	12.011	59.21	44.82
Cl 2p	Reg	195.800	2.504	620.3	0.891	35.460	1.17	2.62
P 2p	Reg	128.700	1.368	103.3	0.486	30.974	0.36	0.70
si 2p	Reg	100.900	1.799	1131.2	0.328	28.086	5.79	10.25

Figure S5: XPS result of the SBA-15-Tz-Ru(II)TPP catalyst.

Figure S6. P XPS spectrum of SBA-15-Tz-Ru(II)TPP.

Figure S7: Other possible structure for methoxy group anchoring to Si with surface OH group.

	Sample	Ru
		mg/l
Fresh Catalyst	JBR-04	21.078
V th Recycle	JBR-05	17.09
catalyst		

(A) Full scan of SBAof Ru3p, (C) of Ru3d,

S 9: ICP Analysis

Figure S8: HR-XPS of

15-Tz-Ru(II)TPP, (B)

(D) Cl2p, (E) of P2p.

Heterogeneous catalyst SBA-15-Tz-Ru(II)TPP (0.70 gm) weight dissolvend in HF solution drop by drop to make clear solution with constant stirring. Finally milipore water is added to homogeneous solution is made up to 10 ML solution for further ICP characterization.

Table for ICP analysis Ru content.

S10: Analytical Data

1-benzyl-4-phenyl-1H-1,2,3-triazole (4a).¹

White solid, M.P. 126-128 °C, ¹H NMR (400MHz, CHLOROFORM-d) δ = 7.81 (d, J = 7.3 Hz, 2 H), 7.68 (s, 1 H), 7.47 - 7.28 (m, 8 H), 5.57 (s, 2 H); ¹³C NMR (101MHz, CHLOROFORM-d) δ = 148.1, 134.6, 130.5, 129.1, 128.7, 128.7, 128.1, 128.0, 125.6, 119.5, 54.2; MS (EI) m/z = 235.1 [M⁺].

1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole (4b).¹

White solid, M.P. 142-144 °C, ¹H NMR (400 MHz, CHLOROFORM-d): δ = 2.37 (s, 3H,), 5.56 (s, 2H,), 7.17 - 7.26 (m, J=7.9 Hz, 2H), 7.30 (br. s., 1H,), 7.31 - 7.35 (m, 1H,), 7.35 - 7.43 (m, 3H,), 7.64 (s, 1H,), 7.66 - 7.77 (m, J=7.9 Hz, 2H) ppm; ¹³C NMR (101 MHz, CHLOROFORM-d): δ = 21.2, 54.1, 119.1, 125.5, 127.6, 128.0, 128.7, 129.1, 129.4, 134.7, 137.9, 148.2; MS (EI) m/z = 249.2 [M⁺].

4-(1-benzyl-1H-1,2,3-triazol-4-yl)benzonitrile (4c).²

White solid, M.P. 140-142 °C, ¹H NMR (500MHz, CHLOROFORM-d): δ = 7.83 - 8.01 (m, J=8.0 Hz, 2 H), 7.77 (s, 1 H), 7.53 - 7.73 (m, J=8.0 Hz, 2 H), 7.40 (br. s., 3 H), 7.28 - 7.37 (m, 2 H), 5.60 ppm (s, 2 H); ¹³C NMR (126MHz, CHLOROFORM-d,): δ = 146.3, 134.9, 134.2, 132.6, 129.2, 129.0, 128.1, 126.0, 120.6, 118.7, 111.5, 54.4; MS (EI) m/z = 260.1 [M⁺].

1-benzyl-4-(4-pentylphenyl)-1H-1,2,3-triazole (4d).³

White solid, M.P. 92-94 °C, ¹H NMR (500MHz, CHLOROFORM-d): δ = 0.90 (t, J=6.9 Hz, 3H), 1.29 - 1.43 (m, 4H), 1.63 (quin, J=7.3 Hz, 2H), 2.62 (t, J=7.6 Hz, 2H), 5.57 (s, 2H), 7.17 - 7.26 (m, J=8.0 Hz, 2H), 7.30 (br. s., 1H), 7.30 - 7.34 (m, 1H), 7.34 - 7.41 (m, 3H), 7.64 (s, 1H), 7.67 - 7.78 (m, J=8.0 Hz, 2H); ¹³C NMR (126 MHz, CHLOROFORM-d): δ = 14.0, 22.5, 31.0, 31.4, 35.6, 54.1, 119.1, 125.6, 127.9, 128.0, 128.7, 128.8, 129.1, 134.7, 143.1, 148.3; MS (EI) m/z = 263.2 [M⁺].

1-benzyl-4-(4-nitrophenyl)-1H-1,2,3-triazole (4e).¹

Light yellow solid, M.P. 166-168 °C, ¹H NMR (500MHz, CHLOROFORM-d): δ = 5.61 (s, 2H), 7.29 - 7.52 (m, 5H), 7.83 (s, 1H), 7.91 - 8.06 (m, J=8.8 Hz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H), 8.18 - 8.35 (mJ=8.8 Hz, 2H); ¹³C NMR (126 MHz, 2H); ¹³C NMZ (126 MHz, 2H); ¹³C NMZ (126 MHz, 2H); ¹³C NMZ (126 MHz, 2H)

CHLOROFORM-d): δ = 54.4, 121.0, 124.2, 126.1, 128.2, 129.0, 129.3, 134.1, 136.8, 146.0, 147.3; MS (EI) m/z = 280.1 [M⁺].

1-(4-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl)ethan-1-one (4f).6

White solid, M.P. 160-162 °C, ¹H NMR (400 MHz, CHLOROFORM-d): δ = 2.61 (s, 3H), 5.59 (s, 2H), 7.33 (d, J=6.7 Hz, 2H), 7.36 - 7.51 (m, 3H), 7.77 (s, 1H), 7.85 - 7.94 (m, J=7.9 Hz, 2H), 7.94 - 8.09 (m, J=8.5 Hz, 2H); ¹³C NMR (101 MHz, CHLOROFORM-d): δ = 26.6, 54.3, 120.4, 125.6, 128.1, 128.9, 129.2, 134.4, 134.9, 136.4, 147.0, 197.5, 209.0; MS (EI) m/z = 277.2 [M⁺].

1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (4g).¹

White solid, M.P. 138-140 °C, ¹H NMR (400MHz, CHLOROFORM-d) δ = 7.80 - 7.67 (m, J = 8.5 Hz, 2 H), 7.58 (s, 1 H), 7.47 - 7.35 (m, 3 H), 7.31 (d, J = 6.7 Hz, 2 H), 7.00 - 6.85 (m, J = 8.5 Hz, 2 H), 5.56 (s, 2 H), 3.83 (s, 3 H); ¹³C NMR (101MHz ,CHLOROFORM-d) d = 159.6, 148.1, 134.7, 129.1, 128.7, 128.0, 127.0, 123.2, 118.7, 114.2, 55.3, 54.2; MS (EI) m/z = 265.1 [M⁺].

1-benzyl-4-(2-methoxyphenyl)-1H-1,2,3-triazole (4h).⁵

White solid, M.P. 168-170 °C, ¹H NMR (500 MHz, CHLOROFORM-d) δ = 3.85 (s, 3H), 5.55 (s, 2H), 6.92 (d, J=8.4 Hz, 1H), 7.05 (t, J=7.4 Hz, 1H), 7.21 - 7.40 (m, 6H), 7.96 (s, 1H), 8.34 (d, J=7.6 Hz, 1H); ¹³C NMR (126 Hz, 1H), 7.95 (t, J=7.4 Hz, 1H); ¹³C NMR (126 Hz, 1H), 7.95 (t, J=7.4 Hz, 1H); ¹³C NMR (126 Hz

MHz, CHLOROFORM-d) δ = 53.9, 55.3, 110.7, 119.3, 120.9, 123.0, 127.6, 127.7, 128.4, 128.8, 128.9, 135.1, 143.5, 155.5; MS (EI) m/z = 265.1 [M⁺].

1-benzyl-4-(4-(pentyloxy)phenyl)-1H-1,2,3-triazole (4i).⁴

White solid, M.P. 116-118 °C, ¹H NMR (500MHz, CHLOROFORM-d): δ = 7.65 - 7.82 (m, J=8.8 Hz, 2 H), 7.57 (s, 1 H), 7.35 - 7.50 (m, 3 H), 7.32 (d, J=6.5 Hz, 2 H), 6.83 - 7.06 (m, J=8.4 Hz, 2 H), 5.57 (s, 2 H), 3.98 (t, J=6.5 Hz, 2 H), 1.80 (quin, J=6.9 Hz, 2 H), 1.32 - 1.52 (m, 4 H), 0.94 ppm (t, J=7.1 Hz, 3 H); ¹³C NMR (126MHz, CHLOROFORM-d): δ = 159.2, 148.2, 134.8, 129.1, 128.7, 128.0, 127.0, 123.0, 118.6, 114.8, 68.1, 54.2, 28.9, 28.2, 22.5, 14.0; MS (EI) m/z = 265.1 [M⁺].

1-benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole (4j).7

White solid, M.P. 74-76 °C, ¹H NMR (400MHz, CHLOROFORM-d) : δ = 8.38 (dd, J=5.8, 3.4 Hz, 1 H), 7.82 - 7.99 (m, 2 H), 7.73 (s, 1 H), 7.70 (d, J=6.7 Hz, 1 H), 7.47 - 7.59 (m, 3 H), 7.31 - 7.44 (m, 4 H), 5.67 ppm (s, 2 H); ¹³C NMR (101MHz, CHLOROFORM-d): δ = 147.3, 134.6, 133.8, 131.0, 129.2, 128.9, 128.8, 128.4, 128.1, 128.0, 127.2, 126.6, 125.9, 125.4, 125.3, 122.4, 54.3; MS (EI) m/z = 285.1 [M⁺].

1-(4-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole⁸ (4k)

White solid, M.P. 134-136 °C; ¹H NMR (500MHz ,CHLOROFORM-d) δ = 7.81 - 7.77 (m, 2 H), 7.64 (s, 1 H), 7.42 - 7.36 (m, 2 H), 7.31 (d, *J* = 7.2 Hz, 1 H), 7.25 (s, 2 H), 6.91 (d, *J* = 8.8 Hz, 2 H), 5.49 (s, 2 H),

3.80 (s, 3 H): ¹³C NMR (126MHz ,CHLOROFORM-d) δ = 159.9, 148.0, 130.5, 129.6, 128.7, 128.0, 126.6, 125.6, 119.3, 114.4, 55.3, 53.7

2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine ⁹(4I)

White solid, M.P. **114-116** °C; ¹H NMR (500MHz ,CHLOROFORM-d) $\delta = 8.54$ (d, J = 4.2 Hz, 1 H), 8.18 (d, J = 8.0 Hz, 1 H), 8.06 (s, 1 H), 7.77 (dt, J = 1.7, 7.7 Hz, 1 H), 7.43 - 7.32 (m, 5 H), 7.21 (ddd, J = 1.0, 5.5, 6.9 Hz, 1 H), 5.59 (s, 2 H); ¹³C NMR (126MHz ,CHLOROFORM-d) $\delta = 150.2$, 149.3, 148.7, 136.9, 134.3, 129.2, 128.8, 128.3, 122.8, 121.9, 120.2, 54.4.

1-benzyl-4-heptyl-1H-1,2,3-triazole 8 (4m)

White solid, M.P. 66-68 °C; ¹H NMR (400MHz ,CHLOROFORM-d) d = 7.20 - 7.09 (m, 3 H), 7.04 (d, J = 7.9 Hz, 2 H), 6.99 - 6.90 (m, 1 H), 5.28 (s, 2 H), 2.47 (t, J = 7.9 Hz, 2 H), 1.42 (quin, J = 7.3 Hz, 2 H), 1.13 - 0.99 (m, 10 H), 0.66 (t, J = 6.7 Hz, 3 H); ¹³C NMR (101MHz ,CHLOROFORM-d) d = 149.0, 135.0, 129.0, 128.9, 128.5, 127.9, 120.4, 53.9, 31.8, 29.4, 29.3, 29.2, 29.2, 29.0, 25.7, 22.6, 14.1;

1-butyl-4-phenyl-1H-1,2,3-triazole¹⁰ (4n)

Colorless thick liquid; ¹H NMR (400MHz ,CHLOROFORM-d) d = 7.83 (d, *J* = 7.3 Hz, 2 H), 7.75 (s, 1 H), 7.46 - 7.37 (m, 2 H), 7.33 (d, *J* = 7.3 Hz, 1 H), 4.39 (t, *J* = 7.3 Hz, 2 H), 1.99 - 1.88 (m, 2 H), 1.47 - 1.31 (m, 2 H), 0.97 (t, *J* = 7.3 Hz, 3 H); ¹³C NMR (101MHz ,CHLOROFORM-d) d = 147.6, 130.7, 128.7, 128.0, 125.6, 119.4, 50.0, 32.2, 19.6, 13.4

References;

- 1. S. S. E. Ghodsinia, B. Akhlaghinia R. Jahanshahi RSC Adv., 2016, 6, 63613-63623.
- 2. Jung, Sun hwa et al Org. Biomol. Chem., 12(47), 9674-9682; 2014.
- 3. C. Zhang, B. Huang, Y. Chen D.-M. Cui New J. Chem., 2013, 37, 2606-2609.
- 4. X. Meng, X. Xu, T. Gao, B. Chen, Eur. J. Org. Chem. 2010, 28, 5409–5414.
- I. P. Silvestri, F. Andemarian, G. N. Khairallah, S. W. Yap, T. Quach, S. Tsegay, C. M. Williams, R. A. J. O'Hair, P. S. Donnellya, S. J. Williams, *Org. Biomol. Chem.*, 2011, 9, 6082–6088.
- 6. P. N. Liu, H. X. Siyang, L. Zhang, S. K. S. Tse and G. Jia, J. Org. Chem., 2012, 77, 5844.
- 7. L. Krisztián, P. Kele, Z. Novák, Synthesis, 2009, 20, 3527-3532.
- 8. K. Asano, S. Matsubara Org. Lett., 2010, 12, 4988-4991.
- 9. Özçubukçu, S.; Ozkal, E.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2009, 11, 4680-4683
- 10. S. R. D. George, G. L. Edwardsa, J. B. Harper Org. Biomol. Chem., 2010, 8, 5354-5358

Figure S11 a : ¹H NMR of Intermediate 4-phenyl-1H-1,2,3-triazole

NMR in CDCl₃

NMR in DMSO

Figure S11 b: ¹H NMR of Intermediate 4-phenyl-1H-1,2,3-triazole

Figure S11 C : ¹³C NMR of Intermediate 4-phenyl-1H-1,2,3-triazole

¹³C 1-benzyl-4-phenyl-1H-1,2,3-triazole (4a).

>

¹³ C 1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole (4b).

4-(1-benzyl-1H-1,2,3-triazol-4-yl)benzonitrile (4c).

4-(1-benzyl-1H-1,2,3-triazol-4-yl)benzonitrile (4c).

¹H 1-benzyl-4-(4-pentylphenyl)-1H-1,2,3-triazole (4d).

¹³C 1-benzyl-4-(4-pentylphenyl)-1H-1,2,3-triazole (4d).

¹³C 1-benzyl-4-(4-nitrophenyl)-1H-1,2,3-triazole (4e).

¹H 1-(4-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl)ethan-1-one (4f).

¹³C 1-(4-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl)ethan-1-one (4f).

¹H 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (4g).

¹³C 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (4g).

¹H1-benzyl-4-(2-methoxyphenyl)-1H-1,2,3-triazole (4h).

¹³C1-benzyl-4-(2-methoxyphenyl)-1H-1,2,3-triazole (4h).

¹³C 1-benzyl-4-(4-(pentyloxy)phenyl)-1H-1,2,3-triazole (4i)

¹H NMR 1-benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole (4j).

¹³C NMR 1-benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole (4j).

¹H NMR 1-(4-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole (4k)

¹³C NMR 1-(4-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole (4k)

¹H NMR 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine (4l)

¹³C NMR 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine (4l)

¹H NMR 1-benzyl-4-heptyl-1H-1,2,3-triazole (4m)

¹³C NMR 1-benzyl-4-heptyl-1H-1,2,3-triazole (4m)

¹H NMR 1-butyl-4-phenyl-1H-1,2,3-triazole (4n)

¹³C NMR 1-butyl-4-phenyl-1H-1,2,3-triazole (4n)

