Supplementary Information for:

"A DFT Study of Chlorine Coverage over Late Transition Metals and Its Implication on 1,2-Dichloroethane Hydrodechlorination"

Ethylene Path	1.	$ClCH_2CH_2Cl(g) + * \rightarrow ClCH_2CH_2Cl*$
	2.	$\mathrm{H}_2(g) + 2^* \longrightarrow 2\mathrm{H}^*$
	3.	$ClCH_2CH_2Cl^* + * \rightarrow ClCH_2CH_2^* + Cl^*$
	4.	$ClCH_2CH_2* + * \rightarrow CH_2CH_2* + Cl*$
	5.	$H^* + Cl^* \rightarrow HCl(g) + 2^*$
	6.	$CH_2CH_2^* \rightarrow CH_2CH_2(g) + *$
Ethane Path	1.	$ClCH_2CH_2Cl(g) + * \rightarrow ClCH_2CH_2Cl^*$
	2.	$\mathrm{H}_2(g) + 2^* \to 2\mathrm{H}^*$
	3.	$ClCH_2CH_2Cl^* + * \rightarrow ClCH_2CH_2^* + Cl^*$
	4.	$ClCH_2CH_2* + * \rightarrow CH_2CH_2* + Cl*$
	5.	$\mathrm{CH}_{2}\mathrm{CH}_{2}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{CH}_{3}\mathrm{CH}_{2}^{*} + ^{*}$
	6.	$\mathrm{CH_3CH_2}^* + \mathrm{H}^* \rightarrow \mathrm{CH_3CH_3}^* + *$
	7.	$\mathrm{H}^* + \mathrm{Cl}^* \to \mathrm{HCl}(g) + 2^*$
	8.	$\mathrm{CH_3CH_3}^{*} \to \mathrm{CH_3CH_3}(g) + *$

Scheme S1: Elementary steps in 1,2-DCA hydrodechlorination mechanism

Table S1: Comparison between calculated lattice parameters used in this work and experimental values

	Lattice constant (Å)					
Metal	DFT (PW91)	Experiment ^[1]				
Pt (fcc)	<i>a</i> = 3.986	<i>a</i> = 3.924				
Co (hcp)	<i>a</i> = 2.499	a = 2.507				
	c = 4.031	c = 4.069				
Ni (fcc)	<i>a</i> = 3.527	a = 3.524				
Cu (fcc)	<i>a</i> = 3.638	<i>a</i> = 3.615				
Ru (hcp)	a = 2.728	a = 2.706				
	c = 4.305	c = 4.282				
Rh (fcc)	a = 3.844	a = 3.803				
Pd (fcc)	<i>a</i> = 3.957	a = 3.890				
Ag (fcc)	a = 4.163	a = 4.086				
Ir (fcc)	a = 3.880	a = 3.839				
Au (fcc)	a = 4.176	a = 4.078				

Surface	BE _H (eV) ^a
Pt(111)	-2.81 (top)
Co(0001)	-2.83 (fcc)
Ni(111)	-2.78 (fcc)
Cu(111)	-2.57 (fcc)
Ru(0001)	-2.79 (fcc)
Rh(111)	-2.79 (fcc)
Pd(111)	-2.90 (fcc)
Ag(111)	-2.14 (fcc)
Ir(111)	-2.72 (top)
Au(111)	-2.18 (fcc)

Table S2: Calculated binding energy of atomic hydrogen, minimum energy structure, at 1/9 ML

^aPreferred binding sites are listed in parentheses.

Table S3: Calculated d band center (ε_d) of surface metal atoms on clean and 1/3 ML Cl-covered surfaces (all values in eV).

Surface	ε_d (clean)	ε_d (covered)	shift ^a
Pt(111)	-1.90	-2.09	-0.19
Co(0001)	-0.95	-1.06	-0.19
Ni(111)	-1.11	-1.25	-0.14
Cu(111)	-2.24	-2.40	-0.16
Ru(0001)	-2.02	-2.08	-0.06
Rh(111)	-1.82	-1.97	-0.15
Pd(111)	-1.48	-1.72	-0.24
Ag(111)	-3.74	-3.76	-0.02
Ir(111)	-2.33	-2.56	-0.23
Au(111)	-2.99	-3.22	-0.23

ashift = ε_d (covered) – ε_d (clean)

Table S4: Comparison between destabilization in binding of 1,2-DCA hydrodechlorination intermediates induced by 1/3 ML Cl and Cl displacement energies (ΔE_{3Cl}) associated with the adsorption on Pt(111) (all values in eV).

Species	BE (clean)	BE (1/3 ML Cl)	Destabilization ^a	$\Delta E_{3 \mathrm{Cl}}^{\mathrm{b}}$
CH ₃ CH ₃	-0.05	-0.04	0.01	0.01
CH ₃ CH ₂ Cl	-0.26	-0.03	0.23	0.00
ClCH ₂ CH ₂ Cl	-0.22	-0.05	0.17	0.01
CH ₃ CH ₂	-2.08	-1.85	0.23	0.35
ClCH ₂ CH ₂	-2.16	-1.78	0.38	0.35
CH_2CH_2	-1.36	-1.12	0.24	0.32
Н	-2.81	-2.62	0.19	0.20
Cl	-2.83	-2.41	0.42	0.31

^aDestabilization = BE (1/3 ML Cl) - BE (clean)

 ${}^{b}\Delta E_{3Cl} = E_{3Cl+slab}$ (adsorbate) $- E_{3Cl+slab}$ (opt), where $E_{3Cl+slab}$ (adsorbate) is the total energy obtained using a single-point calculation with the three Cl spectators and the slab Pt atoms fixed at their corresponding positions in the preferred adsorption geometry of the respective adsorbate on 1/3 ML Cl-covered Pt(111)

and the adsorbate atoms themselves removed, and $E_{3Cl+slab}$ (opt) is the total energy of three Cl atoms adsorbed at their most stable $(\sqrt{3} \times \sqrt{3})R60^{\circ}$ superstructure on Pt(111).

Coverege		Average BE per chlorine atom (eV)								
Coverage	Pt(111)	Co(0001)	Ni(111)	Cu(111)	Ru(0001)	Rh(111)	Pd(111)	Ag(111)	Ir(111)	Au(111)
1/9 ML	-2.83	-3.63	-3.49	-3.41	-3.77	-3.51	-3.25	-3.04	-3.16	-2.36
2/9 ML	-2.75	-3.60	-3.48	-3.35	-3.78	-3.47	-3.19	-3.03	-3.12	-2.35
1/4 ML	-2.72	-3.59	-3.48	-3.32	-3.81	-3.49	-3.17	-3.00	-3.08	-2.30
1/3 ML	-2.75	-3.59	-3.48	-3.32	-3.75	-3.45	-3.14	-2.98	-3.09	-2.33
4/9 ML	-2.66	-3.38	-3.21	-3.15	-3.57	-3.22	-2.91	-2.89	-3.03	-2.28
1/2 ML	-2.58	-2.86	-2.75	-2.66	-3.38	-3.04	-2.71	-2.64	-2.94	-2.15
5/9 ML	-2.51	-2.93	-2.72	-2.69	-3.28	-2.93	-2.63	-2.67	-2.83	-2.13
2/3 ML	-2.34	-2.53	-2.37	-2.25	-2.97	-2.66	-2.41	-2.38	-2.67	-1.95
3/4 ML	-2.21	-2.45	-2.21	-2.16	-2.97	-2.62	-2.31	-2.28	-2.52	-1.89
7/9 ML	-2.18	-2.13	-1.95	-1.77	-2.76	-2.44	-2.18	-2.20	-2.45	-1.83
8/9 ML	-1.87	-1.94	-1.78	-1.21	-2.51	-2.24	-1.79	-1.80	-2.20	-1.48
1 ML	-1.76	-0.88	-0.82	-1.00	-2.02	-1.86	-1.68	-1.67	-2.04	-1.42

Table S5: Summary of average binding energy per chlorine atom at all chlorine surface coverages studied.

Table S6: Binding energies of 1,2-DCA hydrodechlorination intermediates on clean and 1/3 ML Cl-covered surfaces.

	BE (eV)							
	Pt((111)	Co(0001)		Ni(111)		Cu(111)	
Species	clean	covered	clean	covered	clean	covered	clean	covered
CH ₃ CH ₃	-0.05	-0.04	-0.04	0.01	-0.05	-0.04	-0.05	-0.04
CH ₃ CH ₂ Cl	-0.26	-0.03	-0.18	0.03	-0.18	-0.02	-0.12	-0.04
ClCH ₂ CH ₂ Cl	-0.22	-0.05	-0.17	-0.01	-0.18	-0.02	-0.11	-0.06
CH ₃ CH ₂	-2.08	-1.85	-1.62	-0.55	-1.51	-0.75	-1.17	-0.78
ClCH ₂ CH ₂	-2.16	-1.78	-1.63	-0.64	-1.52	-0.73	-1.20	-0.76
CH_2CH_2	-1.36	-1.12	-0.81	-0.03	-0.70	-0.03	-0.21	-0.04
Н	-2.81	-2.62	-2.83	-2.51	-2.77	-2.44	-2.57	-2.26
Cl	-2.83	-2.41	-3.63	-2.75	-3.49	-2.41	-3.41	-2.67
	Ru(0001)		Rh(111)		Pd(111)		Ir(111)	
Species	clean	covered	clean	covered	clean	covered	clean	covered
CH ₃ CH ₃	-0.05	-0.02	-0.05	-0.04	-0.06	-0.04	-0.04	-0.03
CH ₃ CH ₂ Cl	-0.31	-0.05	-0.31	-0.07	-0.31	-0.08	-0.25	-0.06
ClCH ₂ CH ₂ Cl	-0.29	-0.08	-0.29	-0.07	-0.29	-0.09	-0.22	-0.03
CH ₃ CH ₂	-1.70	-1.07	-1.69	-1.16	-1.77	-1.39	-1.84	-1.49
ClCH ₂ CH ₂	-1.73	-1.08	-1.70	-1.17	-1.76	-1.33	-1.84	-1.49
CH_2CH_2	-0.90	-0.37	-0.92	-0.35	-1.05	-0.46	-0.96	-0.65
Н	-2.79	-2.39	-2.79	-2.46	-2.90	-2.59	-2.72	-2.33
Cl	-3.77	-2.77	-3.51	-2.50	-3.25	-2.26	-3.16	-2.67

Figure S1: Optimized lowest-energy structures at all chlorine surface coverages studied. Red spheres indicate Cl atoms.

Figure S2: Pressure-Temperature phase diagram of atomic chlorine adsorption over Co(0001). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{HCl} = 10^{-2}-10^{1}$ bar).

Figure S3: Pressure-Temperature phase diagram of atomic chlorine adsorption over Ni(111). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{HCl} = 10^{-2}-10^{1}$ bar).

Figure S4: Pressure-Temperature phase diagram of atomic chlorine adsorption over Cu(111). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{\text{HCl}} = 10^{-2}-10^{1}$ bar).

Figure S5: Pressure-Temperature phase diagram of atomic chlorine adsorption over Ru(0001). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{HCl} = 10^{-2}-10^{1}$ bar).

Figure S6: Pressure-Temperature phase diagram of atomic chlorine adsorption over Rh(111). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{\text{HCl}} = 10^{-2}-10^{1}$ bar).

Figure S7: Pressure-Temperature phase diagram of atomic chlorine adsorption over Pd(111). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{HCl} = 10^{-2}-10^{1}$ bar).

Figure S8: Pressure-Temperature phase diagram of atomic chlorine adsorption over Ag(111). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{HCl} = 10^{-2}-10^{1}$ bar).

Figure S9: Pressure-Temperature phase diagram of atomic chlorine adsorption over Ir(111). The dark green rectangle indicates the typical reaction conditions of 1,2-DCA hydrodechlorination (T = 423-523 K, $P_{HCl} = 10^{-2}-10^{1}$ bar).

Reference

 V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, *Int. J. Quantum Chem.* 2000, 77, 895–910.