Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Combining Imaging and Anticancer Properties With New Heterobimetallic Pt(II)/M(I) (M = Re, ^{99m}Tc) Complexes

Letícia Quental^a, Paula Raposinho^a, Filipa Mendes^a, Isabel Santos^a, Carmen Navarro-Ranninger^b, Amparo Alvarez-Valdes^b, Huaiyi Huang^{c, d}, Hui Chao^d, Riccardo Rubbiani^c, Gilles Gasser^{e,*}, Adoración G. Quiroga^{b,*}, António Paulo^{a,*}

^{a.} Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal ^{b.} Departamento de Química Inorgánica, Universidad Autonoma de Madrid, ES-28049 Madrid, Spain

^d School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China

*corresponding authors

Email:

gilles.gasser@chimie-paristech.fr;

adoracion.gomez@uam.es;

apaulo@ctn.tecnico.ulisboa.pt

^c Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland

e. Chimie ParisTech, PSL Research University, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France

Tissue/organ	% IA/organ ± SD	
	1 h	4 h
Blood	4.13 ± 1.86	3.93 ± 1.01
Liver	32.0 ± 13.2	28.0 ± 2.5
Intestine	3.81 ± 1.13	3.89 ± 0.52
Spleen	2.92 ± 0.60	3.59 ± 1.47
Heart	4.18 ± 1.59	3.99 ± 0.87
Lung	4.89 ± 2.08	5.83 ± 1.36
Kidney	36.2 ± 12.8	35.2 ± 1.4
Muscle	0.82 ± 0.18	0.69 ± 0.25
Bone	1.05 ± 0.20	0.94 ± 0.23
Stomach	1.86 ± 0.88	1.57 ± 0.38
Pancreas	2.30 ± 1.09	2.19 ± 0.76
Total Excretion (%)	2.0 ± 1.2	5.1 ± 1.1

Table S1. Biodistribution of **Pt-LQ-Tc** in Balb/C mice at 1 h and 4 h after *iv* injection. Data are expressed as the mean % injected activity per organ (% IA/organ) ± S.D., n = 3-4

Figure S1. ¹⁹⁵Pt NMR spectrum of one aliquot of the reaction mixture resulting from the treatment of *trans*-[PtCl₂ipa(pic)] with [**LQ-Re**]Br.

Figure S2. ¹H NMR spectrum of Pt-LQ.

Figure S3. ¹H NMR spectrum of Pt-LQ-Re.

Figure S4. A) HPLC chromatograms of the co-injection of **Pt-LQ-Re** (UV detection, top HPLC trace) and **Pt-LQ-Tc** (γ detection, bottom HPLC trace); **B)** HPLC profile of **Pt-LQ-Tc** after incubation with human serum at 37 °C for 6 h (γ detection, top HPLC trace) in comparison with the HPLC profile of the original **Pt-LQ-Tc** (γ detection, bottom HPLC trace).

Figure S5. UV-vis spectra of compounds in PBS (pH = 7.4).

Figure S6. Normalized emission spectra of compounds in DMSO.

Figure S7. *In vitro* DNA damage of A2780 cells treated with 20 μ M the target complex for 4 h, in the dark and upon irradiation (350 nm, 10 min, 2.58 J/cm²) with relative band intensity; CMPT = camptothecin, cCPt = cisplatin, DSB = double strand breaks; green arrow= the marked effect of CMPT used as positive control.

Figure S8. HPLC chromatogram (radiometric detection) of blood serum and urine from mice administered with **Pt-LQ-Tc** at 1 h p.i., superimposed with the HPLC chromatogram of injected **Pt-LQ-Tc**.

Figure S9. Biodistribution data of **Pt-LQ-Tc** in Balb/C mice at 1 h and 4 h p.i. Data are expressed as the mean % injected activity per gram of tissue (% IA/g) \pm S.D., n = 3-4.