Electronic Supplementary Information (ESI) for:

Confined condensation synthesis and magnetic properties of

layered copper hydroxide frameworks

Seong-Hun Park,^a Myung-Hwa Jung,^b Yong-Jung Lee^c and Young-Duk Huh*^c

^aGyeonggi Science High School for the Gifted, Suwon-si, Gyeonggi-do, 16297, Republic

of Korea

^bDepartment of Physics, Sogang University, Seoul, 04107, Republic of Korea

^cDepartment of Chemistry, Dankook University, Cheonan-si, Chungcheongnam-do,

31116, Republic of Korea

**E-mail: ydhuh@dankook.ac.kr; Fax:* +82-41-559-7860; *Tel:* +82-41-550-3458

Supplementary Figure 1

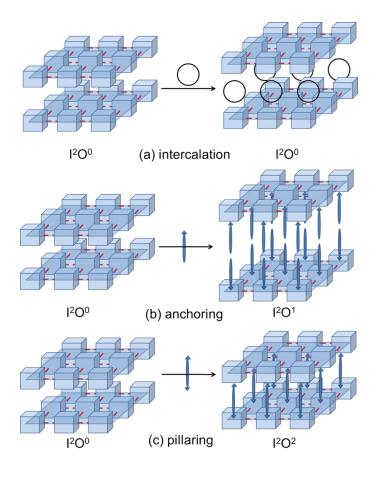


Figure S1. Schematic diagrams of the three kinds of intercalation processes according to Cheetham's classification of hybrid inorganic-organic frameworks: (a) intercalation, (b) anchoring, and (c) pillaring. The square blocks and the dotted red lines represent the inorganic components and the bonding between the inorganic components respectively. IⁿO^m is a hybrid inorganic-organic framework classification as proposed by Cheetham et al.³

Supplementary Figure 2

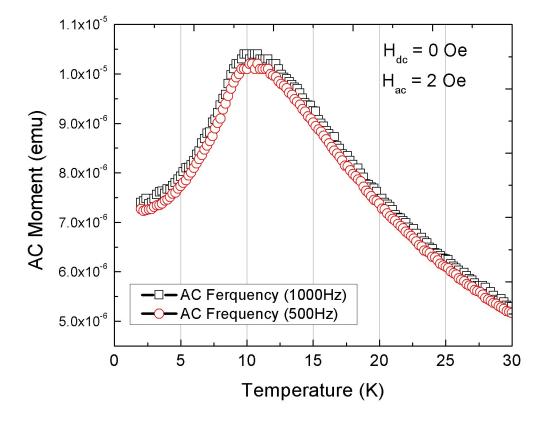


Figure S2. The temperature dependence of the AC magnetic susceptibilities of Cu-OH-DS, measured at AC field, $H_{ac} = H_0 \sin (2\pi ft)$ for $H_0 = 2$ Oe and f = 500 and 1000 Hz.

3

Supplementary Figure 3

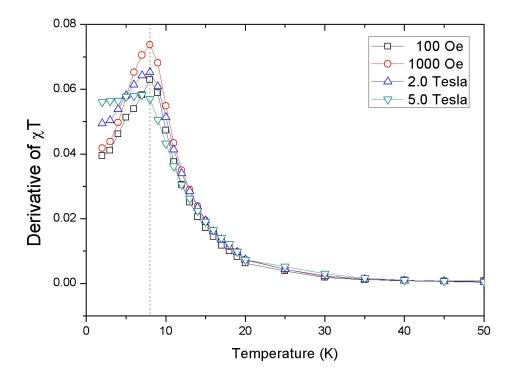


Figure S3. Derivatives of χT for Cu-OH-DS under various applied magnetic fields.