Supplementary Information for:

The First Palladium(IV) Aryldiazenido Complex: Relevance for C-C Coupling

Marzieh Daryanavard^{a,c}, David Armstrong^a, Alan J. Lough^b, and Ulrich Fekl*^a

^aUniversity of Toronto, Mississauga Campus, 3359 Mississauga Road N, Mississauga, Ontario, Canada L5L 1C6

^bUniversity of Toronto, St. George Campus, 80 St George St, Toronto, Ontario, Canada M5S 3H6 ^cPresent Address: Department of Chemistry, Estahban Higher Education Center, Estahban 74519-44655, Iran

General specifications

All manipulations were carried out under an inert (N₂ or Ar) atmosphere using standard glove box (M Braun UniLab) and Schlenk-type techniques except where noted, and using oven-dried glassware. All reagents for which synthesis is not given were commercially available from Sigma Aldrich, Alfa Aesar, or STREM and were used as received without further purification. Solvents were purified prior to use by passing through a column of activated alumina using an MBRAUN SPS. NMR solvents were obtained from Cambridge Isotope Laboratories. Diethyl ether (Et₂O), dimethoxyethane (DME), tetrahydrofuran (THF), and benzene- d_6 (C₆D₆) were further purified using by vacuum distillation from purple sodium benzophenone ketyl. Acetone and acetone- d_6 were dried/degassed over molecular sieves (3Å) before use. [(COD)PdMe₂] was prepared by a modified literature procedure by addition of two equivalents of commercial methylmagnesium bromide solution (Aldrich, 3 M in Et₂O) to a slurry of [(COD)PdCl₂] in dimethoxyethane at - 30 °C.1 All NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer. Standard VNMR pulse sequences for heteronuclear multiple bond correlation (gHMBC) were used. The 2-D experiment (^{15}N - 1H gHMBC) was also optimized for an average $^{3}J_{NH}$ coupling of 3.5 Hz. Chemical shifts are reported in ppm and referenced to residual solvent resonance peaks. Abbreviations for the multiplicity of NMR signals are s (singlet), d (doublet), t (triplet), q (quartet),

m (multiplet), br (broad). Elemental analyses were conducted at Guelph (Chemisar) Laboratories, Guelph, ON, Canada.

Procedure for synthesis of Pd(IV) aryldiazenido complex

A solid sample of [(COD)PdMe₂] (61.1 mg, 0.25 mmol) was placed into an cooled 25 mL air-free round-bottom flask equipped with a magnetic stirring bar. The flask was cooled to -40 °C, after which 5 mL of acetone was added. A solution of KTp* (84.1 mg, 0.25 mmol) in 2 mL acetone was then added at -40 °C and the reaction mixture was allowed to stir while coming to room temperature under Ar over a period of 1 h. A solution of pmbd-BF4 (55.5 mg, 0.25 mmol) in 3 mL acetone was added at room temperature immediately resulted in a rapid color change within mixing from colorless to dark orange without any intermediate colour observed. The solvent was removed by evaporation under high vacuum at room temperature and the resulting solid residue was transferred to the glove box, extracted with 20 mL of diethyl ether, filtered using a 0.2 μ m Whatman disk filter and 30 mL glass syringe, and evaporated to dryness to give an orange solid of [(Tp*)PdMe₂(pmbd)] (1) in 94% (133.6 mg, 0.23 mmol) (Scheme S1).

Scheme S1 Synthesis of [(Tp*)PdMe₂(pmbd)] (1).

Characterization of [(Tp*)PdMe₂(pmbd)] (1)

1 was prepared using the procedure above. It was characterized by X-ray crystallography, elemental analysis, and ¹H, ¹³C{H} and ¹⁵N-¹H gHMBC NMR spectroscopies (Figures S1-S4): ¹H NMR (C₆D₆, δ (ppm)): 2.073 (s, 6H, pz–Me), 2.233 (s, 3H, pz–Me), 2.267 (s, 6H, pz–Me), 2.279 (s, 3H, pz–Me), 2.373 (s, 6H, Pd–Me), 3.163 (s, 3H, Ph–OMe), 5.619 (s, 1H, pz–CH), 5.636 (s, 2H, pz–CH), 6.630 (d, 2H, *o*-Ph), 7.561 (d, 2H, *m*-Ph). ¹³C{H} NMR (C₆D₆, δ (ppm)): 12.771 (2C, pz–Me), 12.982 (2C, pz–Me), 13.171 (1C, pz–Me), 13.864 (1C, pz–Me), 26.738 (2C, Pd–Me), 54.955 (1C, Ph–OMe), 106.950 (2C, pz–CH), 107.915 (1C, pz–CH), 114.583 (2C, *o*-Ph), 124.114 (2C, *m*-Ph), 140.608 (1C, *p*-Ph), 142.998 (2C, pz–C(Me)), 144.192 (1C, pz–C(Me)), 148.905 (2C, pz–C(Me)), 150.553 (1C, pz–C(Me)), 161.192 (1C, *ipso*-Ph). Anal. Calcd for C₂₄H₃₅BN₈OPd (568.81 g mol⁻¹): C, 50.67; H, 6.20; N, 19.69. Found: C, 50.52; H, 6.01; N, 19.47.

Fig. S1 ¹H NMR spectrum of $[(Tp^*)PdMe_2(pmbd)]$ (1) in C₆D₆ at 25 °C.

Fig. S2 ${}^{13}C{H}$ NMR spectrum of [(Tp*)PdMe₂(pmbd)] (1) in C₆D₆ at 25 °C.

Fig. S3 ¹⁵N-¹H gHMBC NMR spectrum of [(Tp*)PdMe₂(pmbd)] (1) in C₆D₆ at 25 °C.

X-ray structure determination of [(Tp*)PdMe₂(pmbd)]

X-ray quality crystals for **1** were obtained from a concentrated diethyl ether solution after three days at -35 °C. An orange single crystal with dimensions of $0.10 \times 0.10 \times 0.03$ mm was chosen for the single-crystal X-ray diffraction study. Data were collected² on a Nonius-Kappa CCD diffractometer using graphite monochromatized Mo *Ka* radiation ($\lambda = 0.71073$ Å) at 150(2) K using the ω -scan technique. Unit cell parameters were refined and data were reduced with Denzo-SMN.³ The absorption correction performed was semi-empirical from equivalents. The structure was solved using direct methods⁴ and refined, full-matrix least-squares on *F*², using SHELXTL V6.1.⁵

Fig. **S4** ORTEP representation (35%) probability ellipsoids) of 1. Selected bond distances (Å) and angles (deg): Pd1-C23, 2.036(2); Pd1-C24, 2.042(3); Pd1-N1, 2.212(2); Pd1-N3, 2.212(2); Pd1-N5, 2.174(2);Pd1-N7, 2.009(2);N7-N8, 1.212(3); N8-C16, 1.456(4); C23-Pd1-C24, N7-Pd1-C23, 87.98(14); 91.26(11); N7-Pd1-C24, 88.87(12); N5-Pd1-N7, 175.20(10); N7-N8-C16, 115.5(3); Pd1-N7-N8, 119.8(2).

Chemical formula	C24H35BN8OPd
Formula weight	568.81
Temperature (K)	150(2) K
Crystal system	Triclinic
Space group	P-1
a (Å)	7.9636(7)
<i>b</i> (Å)	12.4983(12)
<i>c</i> (Å)	13.5112(12)
β (°)	87.268(2)
$V(Å^3)$	1329.8(2)
Ζ	2
Calculated density (Mg/m ³)	1.421
Crystal size (mm)	$0.10 \times 0.10 \times 0.03$
<i>F</i> (000)	588
θ range (°)	1.51 to 27.49
Reflections collected	22570
Independent reflections (R_{int})	$6073 [R_{(int)} = 0.0540]$
Data / restraints / parameters	6073 / 0 / 329
Goodness-of-fit on F^2	1.020
Final R indices	$R_1 = 0.0372, wR_2 = 0.0790$
R indices (all data)	$R_1 = 0.0548, wR_2 = 0.0862$
Range of <i>h</i> , <i>k</i> , <i>l</i>	-10/8, -16/16, -17/17

Table S1 Crystal data and structure refinement for [(Tp*)PdMe₂(pmbd)].

Table S2 Selected bond lengths (Å) and angles (deg) for [(Tp*)PdMe₂(pmbd)].

Bond lengths (Å)	
Pd(1)–N(7)	2.009(2)
Pd(1)–C(23)	2.036(3)
Pd(1)–C(24)	2.042(3)
Pd(1)–N(5)	2.174(2)
Pd(1)–N(1)	2.212(2)
Pd(1)–N(3)	2.212(2)
N(7)-N(8)	1.212(3)

N(8)-C(16)	1.456(4);
Bond angles (deg)	
N(7)-Pd(1-C(23)	91.26(11)
N(7)-Pd(1)-C(24)	88.87(12)
C(23)-Pd(1)-C(24)	87.98(14)
N(7)-Pd(1)-N(5)	175.20(10)
C(23)-Pd(1)-N(5)	92.72(11)
C(24)-Pd(1)-N(5)	93.95(11)
N(7)-Pd(1)-N(1)	91.40(9)
C(23)-Pd(1)-N(1)	177.10(10)
C(24)-Pd(1)-N(1)	93.25(11)
N(5)-Pd(1)-N(1)	84.58(8)
N(7)-Pd(1)-N(3)	89.44(10)
C(23)-Pd(1)-N(3)	93.69(12)
C(24)-Pd(1)-N(3)	177.65(11)
N(5)-Pd(1)-N(3)	87.62(9)
N(1)-Pd(1)-N(3)	85.16(9)
N(7)-N(8)-C(16)	115.5(3)
Pd(1)-N(7)-N(8)	119.8(2)

Thermolysis of [(Tp*)PdMe₂(pmbd)] in C₆D₆

A solution of [(Tp*)PdMe₂(pmbd)] (1) in C₆D₆ was prepared under N₂ atmosphere, placed into a Young tube. The reaction mixture was heated at 70 °C and periodically analyzed by ¹H NMR spectroscopy. 1 disappeared to give one major organometallic product, [(Tp*)PdMe₃] (2), and one major organic product, 4,4'-dimethoxybiphenyl, in ~34% and ~36% yield, respectively, after heating for 1 h at 70 °C. The yields of products were determined by ¹H NMR integration relative to an internal standard (The silicone 'grease' signal was used as the internal standard, which was set to an integration of 1.0 in each spectrum and integration intensities of the least obscured peaks were used to determine NMR yields, namely aromatic C-H peaks for 4,4'-dimethoxybiphenyl and pyrazole C-H peaks for 2).

¹H NMR (C₆D₆, δ (ppm)):

4,4'-Dimethoxybiphenyl: 3.329 (s, 6H, Ph–OMe), 6.841 (d, 4H, o-Ph), 7.417 (d, 4H, m-Ph);

2: 1.859 (s, 9H, Pd-Me), 2.181 (s, 9H, pz-Me), 2.249 (s, 9H, pz-Me), 5.587 (s, 3H, pz-CH).

Fig. S5 ¹H NMR spectrum of $[(Tp^*)PdMe_2(pmbd)]$ in C₆D₆ before heating at 70 °C with integration toward the silicone grease signal as the internal standard.

Thermolysis of [(Tp*)PdMe2(pmbd)] in Acetone-d6

A solution of (COD)PdMe₂ in acetone- d_6 was prepared under N₂ atmosphere, placed into a J. Young tube. The solution was cooled to -50 °C and one equivalent of KTp* in acetone- d_6 was added and allowed to react for 30 minutes to afford K[(Tp*)PdMe₂] *in situ*. One equivalent of [pmbd][BF4] in acetone- d_6 was then added to give [(Tp*)PdMe₂(pmbd)] (1), and a ¹H NMR spectrum was immediately recorded. The reaction mixture was heated at 70 °C and periodically analyzed by ¹H NMR spectroscopy. 1 disappeared to give one major organometallic product, [(Tp*)PdMe₃] (2), and one major organic product, anisole- d_1 in ~50% and ~49% yield, respectively, after heating for 1 h at 70 °C. 4,4'-dimethoxybiphenyl was formed in ~5% yield. The yields of products were determined by ¹H NMR integration relative to an internal standard (The acetone- d_5 residual solvent signal was used as the internal standard, which was set to an integration of 1.0 in each spectrum and integration intensities of the least obscured peaks were used to determine NMR yields, namely methoxy C-H peaks for anisole- d_1 and 4,4'-dimethoxybiphenyl, and pyrazole C-H peaks for **2**).

¹H NMR (Acetone- d_6 , δ (ppm)):

1,5-COD: 5.51 (bs, 4H, CH). 2.33 (bs, 8H, CH₂); Anisole-*d*₁: 3.78 (s, 3H, Ph–OMe), 7.27 (m, 2H, Ph), 6.92 (d, 2H, Ph); 4,4'-Dimethoxybiphenyl: 3.82 (s, 6H, Ph–OMe), 7.53 (d, 4H, *o*-Ph), 6.99 (d, 4H, *m*-Ph); **2**: 1.64 (s, 9H, Pd–Me), 2.28 (s, 9H, pz–Me), 2.37 (s, 9H, pz–Me), 5.77 (s, 3H, pz–CH).

Fig. S7 ¹H NMR spectrum of [(Tp*)PdMe₂(pmbd)] in acetone-*d*₆ before heating at 70 °C with integration toward the solvent residual signal as the internal standard.

Fig. S8 ¹H NMR spectrum of $[(Tp^*)PdMe_2(pmbd)]$ in acetone-*d*₆ after heating for 1 h at 70 °C with integration toward the solvent residual signal as the internal standard.

Isolation and characterization of [(Tp*)PdMe₃] (2)

2 was isolated from the crude reaction mixture of thermolysis of $[(Tp^*)PdMe_2(pmbd)]$ in C₆D₆ at 70 °C after 1 h. The solvent of the reaction mixture was removed by evaporation under high vacuum at room temperature and the resulting solid residue was transferred to the glove box, extracted with 2 mL of diethyl ether, filtered using a 0.2 μ m Whatman disk filter, and recrystallized at -35 °C to give the colorless crystals of $[(Tp^*)PdMe_3]$ in ~43% yield (16.5 mg, 0.036 mmol). It was also characterized by X-ray crystallography, elemental analysis, and ¹H and ¹³C{H} NMR spectroscopies. It is worth noting that the isolated yield of **2** is greater than the reported NMR

yield. This is likely due to the use of Et_2O in the isolation of the product, since the product appears to have better solubility in Et_2O than in C_6D_6 .

¹H NMR (C₆D₆, δ (ppm)): 1.861 (s, 9H, Pd–Me), 2.183 (s, 9H, pz–Me), 2.250 (s, 9H, pz–Me), 5.588 (s, 3H, pz–CH). ¹³C {H} NMR (C₆D₆, δ (ppm)): 12.863 (3C, Pd–Me), 13.365 (3C, pz–Me), 13.450 (3C, pz–Me), 107.322 (3C, pz–CH), 142.906 (3C, pz–C(Me)), 148.962 (3C, pz–C(Me)). Anal. Calcd for C₁₈H₃₁BN₆Pd (448.70 g mol⁻¹): C, 48.14; H, 6.90; N, 18.72. Found: C, 47.95; H, 6.72; N, 18.56.

Fig. S9 ¹H NMR spectrum of [(Tp*)PdMe₃] (2) in C₆D₆ at 25 °C.

Fig. S10 ${}^{13}C{H}$ NMR spectrum of [(Tp*)PdMe₃] (2) in C₆D₆ at 25 °C.

X-ray structure determination of [(Tp*)PdMe₃]

X-ray quality crystals for **2** were obtained from a concentrated diethyl ether solution after a week at -35 °C. A colorless single crystal with dimensions of $0.38 \times 0.23 \times 0.15$ mm was chosen for the single-crystal X-ray diffraction study. Data were collected² on a Nonius-Kappa CCD diffractometer using graphite monochromatized Mo *Ka* radiation ($\lambda = 0.71073$ Å) at 110(2) K using the ω -scan technique. The structure refinement was performed using similar methods and techniques as used for **1**.

Fig. S11 ORTEP representation (35% probability ellipsoids) of **2**. Selected bond distances (Å) and angles (deg): Pd1–C16, 2.0439(16); Pd1–C17, 2.0397(15); Pd1–C18, 2.0399(15); Pd1–N1, 2.2304(13); Pd1–N3, 2.2122(12); Pd1–N5, 2.1925(12); C16–Pd1–C17, 87.65(7); C16–Pd1–C18, 87.96(7); C17–Pd1–C18, 87.49(7).

Chemical formula	$C_{18}H_{31}BN_6Pd$
Formula weight	448.70
Temperature (K)	110(2) K
Crystal system	Orthorhombic
Space group	Pbca
<i>a</i> (Å)	16.3066(9)
<i>b</i> (Å)	9.8567(6)
<i>c</i> (Å)	25.2093(14)
β (°)	90
$V(\text{\AA}^3)$	1329.8(2)
Ζ	8
Calculated density (Mg/m ³)	1.471

Table S3 Crystal data and structure refinement for [(Tp*)PdMe₃].

F(000)	1856
θ range (°)	1.62 to 33.17
Reflections collected	32099
Independent reflections (R_{int})	7727 [$R_{(int)} = 0.0282$]
Data / restraints / parameters	7727 / 0 / 248
Goodness-of-fit on F^2	1.067
Final R indices	$R_1 = 0.0271, wR_2 = 0.0585$
R indices (all data)	$R_1 = 0.0354, wR_2 = 0.0621$
Range of <i>h</i> , <i>k</i> , <i>l</i>	-25/20, -11/15, -38/38

 Table S4 Selected bond lengths (Å) and angles (deg) for [(Tp*)PdMe3].

Bond lengths (Å)	
Pd(1)-C(17)	2.0397(15)
Pd(1)–C(18)	2.0399(15)
Pd(1)-C(16)	2.0439(16)
Pd(1)–N(5)	2.1925(12)
Pd(1)–N(3)	2.2122(12)
Pd(1)–N(1)	2.2304(13)
Bond angles (deg)	
C(17)–Pd(1)–C(18)	87.49(7)
C(17)–Pd(1)–C(16)	87.65(7)
C(18)–Pd(1)–C(16)	87.96(7)
C(17)–Pd(1)–N(5)	177.87(6)
C(18)–Pd(1)–N(5)	92.27(6)
C(16)-Pd(1)-N(5)	94.46(6)
C(17)-Pd(1)-N(3)	94.33(6)
C(18)-Pd(1)-N(3)	178.17(6)
C(16)-Pd(1)-N(3)	91.86(6)
N(5)-Pd(1)-N(3)	85.93(4)
C(17)–Pd(1)–N(1)	93.05(6)
C(18)–Pd(1)–N(1)	93.21(6)
C(16)-Pd(1)-N(1)	178.66(6)
N(5)–Pd(1)–N(1)	84.85(4)
N(3)-Pd(1)-N(1)	86.94(4)

References

- 1 K.-C. Lau, B. J. Petro, S. Bontemps and R. F. Jordan, Organometallics, 2013, 32, 6895.
- 2 Nonius COLLECT; Delft, The Netherlands, 1997-2003.
- 3 Z. Otwinowski and W. Minor, In *Methods in Enzymology*, C. W. Carter and R. M. Sweet, Eds., Academic Press, New York, 1997; Vol. 276, p 307.
- 4 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.*, 1994, **27**, 1045.
- 5 G. M. Sheldrick, SHELXTL, Structure determination software suite, 6.1, Madison, WI, 2001.