ESI for

Palladacycles of sulfated and selenated Schiff bases of ferrocenecarboxaldehyde as catalysts for O-arylation and Suzuki–Miyaura coupling

Alpesh K. Sharma, Hemant Joshi, Renu Bhaskar, Satyendra Kumar and Ajai K. Singh*

Department of Chemistry, Indian Institute of Technology Delhi, New Delhi – 110016, India

E-mail: aksingh@chemistry.iitd.ac.in

List of content

- 1. Table S1 of the crystallographic and refinement data of 1-3
- 2. TableS2 of selected bond lengths and bond angles of 1-3
- 3. Table S3 of non-covalent interactions C–H \cdots Cl distances (Å) of complexes 1-3
- 4. Mass and NMR spectra

Table S1. Crystal data and structural refinement parameters for 1-3

Compounds	1	2	3
Empirical	C ₁₉ H ₁₈ ClFeNPd S	C ₁₉ H ₁₈ ClFeNPdSe	C ₃₇ H ₃₃ ClFeNPPd S
formula			
Formula wt.	490.10	537.00	752.37
Crystal size	$0.43 \times 0.21 \times 0.19$	0.34×0.25×0.22	0.35×0.27 ×0.15
[mm]			
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P 21/c	P 2(1)/c	P -1
Unit Cell	a = 9.193(2)	a = 9.203(7)	a = 10.0905(14)
dimension	b = 11.622(3))	b = 11.673(8)	b = 10.5555(14)
	c = 17.081(4)	c = 17.075(12)	c = 18.524(3)
	$\alpha = 90.00$	$\alpha = 90.00^{\circ}$	$\alpha = 100.307(2)$
	$\beta = 101.079(4)$	$\beta = 101.083(13)$	$\beta = 93.349(2)$
	$\gamma = 90.00$	$\gamma = 90.00^{\circ}$	γ =116.254(2)
Volume [Å ³]	1790.9(7)	1800(2)	1719.6(4)
Z	4	4	2
Density (Calc.)	1.818	1.982	1.453
$[Mg \cdot m^{-3}]$			
Absorption	2.079	3.975	1.156
coeff. [mm ⁻¹]			
F(000)	976.0	1048	764.0
θ range [°]	2.13 - 24.99	2.85-27.26	2.21 - 25.00
Index ranges	$-10 \le h \le 10$	-10≤ <i>h</i> ≤ 7	-11≤ <i>h</i> ≤11
	$-13 \le k \le 13$	$-13 \le k \le 13$	$-12 \le k \le 12$
	$-20 \le l \le 20$	$-18 \le l \le 18$	$-22 \le l \le 22$
Reflections	16747	7033	16403
collected			
Independent	3151 (0.0489)	3045 (0.0320)	6044(0.0245)
reflections $(R_{int.})$			
Max./min.	0.674 /0.598	0.447 / 0.358	0.839/0.696
Transmission			
Data/restraints/p	3151 /0/ 217	3045 /0/217	6030/0/388
arameters			
Goodness-of-fit	1.170	1.058	1.156
on F^2			
Final R indices	$R_1 = 0.0492$	$R_I = 0.0866$	$R_I = 0.0725$
[<i>I</i> >2σ(<i>I</i>)]	$wR_2 = 0.0859$	$wR_2 = 0.1414$	$wR_2 = 0.2261$
R indices (all	$R_{I} = 0.0\overline{389}$	$R_1 = 0.0477$	$R_1 = 0.0660$
data)	$wR_2 = 0.0825$	$wR_2 = 0.0.1328$	$wR_2 = 0.2205$
Largest diff.	0.632/ -0.419	0.936 /-0.606	1.450/-0.383
peak/hole [e.Å-			

Table S2.	Selected	bond	lengths	and	bond	angles	of 1-	- 3

Complex	Bond length [Å]	Bond angle [°]				
1.	Pd1—S1 2.4249(12) N1—Pd1 2.012(4) Cl1—Pd1 2.2870(14) C11—Pd1 1.973(4)) C9 —N1 1.274(6) C6—S1 1.785(5)	$\begin{array}{c ccccc} N1 & - Pd1 - Cl1 & 174.00(11) \\ C11 - Pd1 - S1 & 165.62(14) \\ C11 - Pd1 - Cl1 & 93.74(15) \\ N1 - Pd1 - S1 & 84.68(11) \\ C11 - Pd1 - N1 & 81.03(18) \\ C7 - Se1 - Pd1 & 93.22(16) \\ C9 - N1 - Pd1 & 116.9(3) \\ C8 - N1 - Pd1 & 120.0(3) \\ \end{array}$				
2.	Pd1—Se1 2.5058(14) N1—Pd1 2.025(5) C11—Pd1 2.286(2) C11—Pd1 1.956(6) C9—N1 1.286(8) C6—Se1 1.912(6)	$\begin{array}{c ccccc} N1 & - Pd1 - Cl1 & 174.53(15) \\ C11 - Pd1 - Se1 & 166.61(18) \\ C11 - Pd1 - Cl1 & 93.8(2) \\ N1 - Pd1 - Se1 & 85.25(16) \\ C11 - Pd1 - N1 & 81.6(2) \\ C7 - Se1 - Pd1 & 90.6(2) \\ C9 - N1 - Pd1 & 115.9(4) \\ C8 - N1 - Pd1 & 121.5(4) \\ \end{array}$				
3	Pd1—P1 2.2445(17) N1—Pd1 2.131(6 Cl1—Pd1 2.370(2) C11—Pd1 2.003(7 C9—N1 1.272(10) C6—Se1 1.775(9	N1—Pd1—Cl1 92.36(18) C11—Pd1—P1 92.00(2) C11—Pd1—Cl1 173.1(2) N1—Pd1—P1 172.07(19) C11—Pd1—N1 80.90(3) C25—P1—Pd1 111.90(2) C31—P1—Pd1 114.60(2) C37—P1—Pd1 17.00(2)				

Complex 1	Complex 2	Complex 3				
H1-Cl1 2.934	H1-Cl1 2.888	Cl1-H22 2.945				
H2-Cl 1 2.879	H2-Cl 1 2.924	H9-F6 2.612				
H14-Cl1 2.744	H14-Cl1 2.602					
С15-Н13 2.899	H7B-H17 2.357					

Mass spectra-

	N	lass S	Spectru	im Si	martFo	ormula	Repor	t		
Analysis Info						Ac	quisition Dat	e 8	3/3/2012 11:	06:18 AM
Analysis Name Method Sample Name Comment	D:\Data\JULY_ tune_low.m	_2012\2A.	d			Op Ins	erator strument / Se	s r#r	Sharma/Sing nicrOTOF-C	gh) 1026
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 1500 m/z		Ion Polarity Set Capillar Set End Pla Set Collisio	y ite Offset n Cell RF	Positive 4500 V -600 V 100.0 Vpj	ρ	Set Nebul Set Dry He Set Dry G Set Divert	izer eater as Valve	0.3 180 4.0 e Sou	Bar °C I/min Irce
Intens x10 ⁵ -										+MS, 0.8n
1.5										
1.0	350	.0660								
0.5	245 2462									
0.0	215.0163 	400	60	0	800	,	1000	1	200	1400
Meas. m	z # Formula		Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule

Fig S1 Mass spectrum of ligand 1

Fig S2 Mass spectrum of ligand 2

Fig S3 Mass spectrum of complex 1

Fig S4 Mass spectrum of complex 2

Mass Spectrum SmartFormula Report

Fig S5 Mass spectrum of complex 3

FigureS7 $^{13}C\{^{1}H\}$ NMR spectrum of ligand L1

FigureS9 $^{13}C\{^{1}H\}$ NMR spectrum of ligand L2

FigureS11 ¹H NMR spectrum of 1

FigureS12 ¹³C{¹H} NMR spectrum of 1

FigureS13 ¹H NMR spectrum of 2

FigureS14 ${}^{13}C{}^{1}H$ NMR spectrum of 2

FigureS15 ⁷⁷Se $\{^{1}H\}$ NMR spectrum of 2

FigureS17 ${}^{13}C{}^{1}H$ NMR spectrum of 3

FigureS19 ¹³C{¹H} NMR spectrum of catalysis reaction mixture (C-O coupling)

FigureS20 ¹³C{¹H} NMR spectrum of catalysis reaction mixture (C-C coupling)

FigureS21 ¹³C{¹H} NMR spectrum of catalysis reaction mixture (C-C coupling)

FigureS22 ¹³C{¹H} NMR spectrum of catalysis reaction mixture (C-C coupling)

FigureS23 ¹³C{¹H} NMR spectrum of catalysis reaction mixture (C-C coupling)

FigureS24 TEM images of catalysis reaction mixture (a) C-O coupling, (b) Suzuki-Miyaura coupling

NMR Data of products of C-O coupling reaction (3a-3j)-

4-phenoxybenzaldehyde (**3a**):¹ Yellow liquid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ (ppm): 9.92 (s, 1H), 7.84-7.86 (d, 2H), 7.40-7.45 (t, 2H), 7.20-7.26 (m, 1H), 7.05-7.11 (t, 4H).

1-(4-phenoxyphenyl)ethanone (**3b**):¹ White Solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.91-7.96 (d, 2H), 7.36-7.42 (t, 2H), 7.19-7.22 (t, 1H), 7.06-7.08 (d, 2H), 6.97-7.02 (d, 2H), 2.57 (s, 3H).

1-Nitro-4-phenoxybenzene (**3c**):²Yellow Solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 8.11-8.14 (d, 2H), 7.34-7.40 (t, 2H), 7.16-7.21 (t, 1H), 7.01-7.03 (d, 2H), 6.92-6.95 (d, 2H).

4-phenoxybenzonitrile (**3d**):¹White Solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si):7.49-7.55 (m, 2H), 7.30-7.35 (t, 2H), 7.11-7.17 (t, 1H), 6.96-6.98 (d, 2H), 6.90-6.93(d, 2H).

2-phenoxybenzaldehyde (**3e**):¹Yellow liquid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 10.45 (s, 1H), 7.85-7.88 (d, 1H), 7.41-7.47 (t, 1H), 7.30-7.35 (t, 2H), 7.10-7.14 (t, 2H), 6.98-7.01 (d, 2H), 6.81-6.84 (d, 1H).

1-(2-phenoxyphenyl)ethanone (**3f**):²Colorless oil. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.83-7.86 (d, 1H), 7.35-7.45 (m, 3H), 7.15-7.20 (m, 2H), 7.01-7.03 (d, 2H) 6.90-6.92 (d, 2H) 2.64 (s, 3H).

Diphenyl ether (**3g**):²Colorless liquid. ¹H NMR(300 MHz, CDCl₃, 25°C vs Me₄Si): 7.24-7.28 (t, 4H), 7.02-7.05 (t, 2H), 6.93- 6.95 (d, 4H).

1-Methyl-4-phenoxybenzene(3h):²Colorless liquid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.46-7.48 (m, 2H), 7.23-7.26 (t, 2H), 7.06- 7.07 (m, 1H), 6.98-7.04 (m, 2H), 6.89-6.91 (m, 2H), 2.26 (s, 3H).

1-Methoxy-4-phenoxybenzene(3i):¹Colorless liquid. 1H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.25-7.32 (m, 2H), 7.01-7.06 (t, 1H), 6.93- 7.01 (m, 4H), 6.86-6.90 (m, 2H), 3.81 (s, 3H).

2-phenoxypyridine(3j):³ Colorless oil. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 8.12-8.13 (m, 1H), 7.58-7.62 (t, 1H), 7.31-7.35 (t, 2H), 7.05-7.18 (m, 3H), 6.90-6.93 (t, 1H), 6.81-6.84 (d, 1H).

NMR Data of products of Suzuki-Miyaura coupling reaction (6a-6i)-

4–Phenylbenzaldehyde(6a):⁴ Light yellow solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ 10.06 (s, 1H),7.95 (d, J = 8.4 Hz, 2H),7.75 (d, J = 8.4 Hz, 2H),7.63–7.65 (m, 2H),7.39–7.51 (m, 3H).

4-Nitrobiphenyl(6b):⁵ Pale yellow solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ 8.27 (d, J = 9.0 Hz, 2H), 7.71 (d, J = 9.0 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.41–7.51 (m, 3H).

4-Phenylbenzonitrile(6c):⁵ Pale yellow solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): δ 7.54–7.61 (m, 4H), 7.49–7.52 (m, 2H), 7.34–7.45 (m, 3H).

4–Acetylbiphenyl(6d):⁵ White solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 8.02 (d, J = 8.4 Hz, 2H), 7.60–7.68 (m, 4H), 7.38–7.48 (m, 3H), δ 2.62 (s, 3H).

Biphenyl(6e): ⁵ White solid: ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.58 (d, J = 6.9 Hz, 4H),7.42 (t, J = 7.5 Hz, 4H), δ 7.33 (t, J = 7.5 Hz, 2H).

Biphenyl-4-carboxylic acid(6f):⁶ White solid. ¹H NMR (300 MHz, DMSO, 25°C vs Me₄Si): δ, 8.03 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 6.9 Hz, 2H), 7.39–7.52 (m, 3H).

4–Phenylpyridine (6g):⁷Brown solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 8.65 (d, J = 5.4 Hz, 2H),7.62 (d, J = 8.1 Hz, 2 H),δ 7.40–7.50 (m, 5H).

4-Methylbiphenyl (6h):⁵ Colorless solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.55–7.58 (m, 2H),7.48 (d, J = 8.1 Hz, 2H),7.38–7.42 (m, 2H),7.27–7.32 (m, 1H),7.23 (d, J = 7.8 Hz, 2H),δ 2.37 (s, 3H).

4-Methoxybiphenyl (6i):⁵ White solid. ¹H NMR (300 MHz, CDCl₃, 25°C vs Me₄Si): 7.50–7.55 (m, 4H), 7.40 (t, J = 7.2 Hz, 2H),7.28–7.31 (m, 1H),6.96 (d, J = 8.4 Hz, 2H),δ 3.82 (s, 3H).

References

- 1. T. Hu, T. Schulz, C. Torborg, X. Chen, J. Wang, M. Beller, J. Huang, Chem. Commun., 2009, 7330.
- 2. Q. Zhang, D. Wang, X. Wang, K. Ding, J.Org. Chem., 2009, 74, 7187.
- V. Engels, F. Benaskar, N. Patil, E. V. Rebrov, V. Hessel, L. A. Hulshof, D. A. Jefferson, J. A. J. M. Vekemans, S. Karwal, J. C. Schouten, A. E. H. Wheatley, *Organic Process Research & Development*, 2010, 14, 644.
- 4. , R. K. Arvela, N. E. Leadbeater, Org. Lett. 2005, 7, 2101.
- 5. B.Tao, D. W. Boykin, J.Org. Chem. 2004, 69, 4330.
- 6. G. M. Scheuermann, L. Rumi, P.Steurer, W. Bannwarth, R.Mulhaupt, J. Am. Chem. Soc. 2009, 131, 8262.
- 7. B., V.Martinez, A. G. de Viedma, C.Burgos, B. J. Alvarez, Org. Lett., 2000, 2, 3933.