ESI

Na₂CdGe₂Q₆ (Q = S, Se): two metal-mixed chalcogenides with phase-matching abilities and large second-harmonic generation responses

Guang-mao Li, ^{a, b} Qiong Liu, ^{a, b} Kui Wu, ^{*a} Zhi-hua Yang, ^a Shi-lie Pan^{*a}

^a Key Laboratory of Functional Materials and Devices for Special Environments,

Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences;

Xinjiang Key Laboratory of Electronic Information Materials and Devices; 40-1 South Beijing Road, Urumqi 830011, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

ESI

1. Tables and Figures

Table S1. Atomic bond-valence and isotropic displacement parameters for title compounds.

Table S2. A series of IR materials with structural transformations.

Table S3. Dipole-moment calculation for title compounds.

Figure S1. Raman spectra for title compounds.

Figure S2. SHG density calculation for Na₂CdGe₂S₆.

2. References

 Table S1. Atomic bond-valence and isotropic displacement parameters for title compounds.

toms	S.O.F.	Х	у	Z	U(eq)	BVS		
Na(1)	1	0.3778(5)	0.3000(3)	0.7196(3)	0.052(1)	0.970		
Na(2)	1	-0.0219(5)	0.5115(2)	0.3514(3)	0.051(1)	0.964		
Cd(1)	1	0.8114(1)	0.2513(1)	0.5591(1)	0.023(1)	2.185		
Ge(1)	1	0.4371(1)	0.3628(1)	0.3366(1)	0.017(1)	4.076		
Ge(2)	1	0.6212(1)	0.5247(1)	0.5852(1)	0.016(1)	4.080		
S(1)	1	0.8823(2)	0.4453(1)	0.5758(2)	0.024(1)	1.967		
S(2)	1	0.3655(2)	0.4341(1)	0.5027(1)	0.022(1)	1.993		
S(3)	1	0.11285(2)	0.1869(1)	0.5295(2)	0.023(1)	1.893		
S(4)	1	0.5909(3)	0.4994(1)	0.2742(1)	0.027(1)	2.247		
S(5)	1	0.6068(2)	0.2206(1)	0.3640(1)	0.023(1)	2.156		
S(6)	1	0.1764(2)	0.3436(1)	0.2200(1)	0.025(1)	2.018		
Na ₂ CdGe ₂ Se ₆								
atoms	S.O.F.	Х	У	Z	U(eq)	BVS		
Na(1)	1	0.6702(13)	0.2986(6)	0.3087(8)	0.057(2)	0.965		
Na(2)	1	0.5656(11)	0.066(5)	0.6814(7)	0.048(2)	0.988		
Cd(1)	1	0.2355(2)	0.2501(1)	0.4722(1)	0.028(1)	2.268		
Ge(1)	1	0.4292(2)	0.5231(1)	0.4454(1)	0.019(1)	4.094		
Ge(2)	1	0.6129(2)	0.3611(1)	0.6935(2)	0.019(1)	4.093		
Se(1)	1	0.4557(3)	0.4977(1)	0.2527(2)	0.027(1)	2.225		
Se(2)	1	0.3763(2)	0.1550(1)	0.3159(2)	0.030(1)	2.042		
Se(3)	1	0.6923(2)	0.4323(1)	0.5264(1)	0.023(1)	2.020		
Se(4)	1	0.1609(2)	0.4435(1)	0.4549(2)	0.025(1)	1.975		
Se(5)	1	0.4412(2)	0.2158(1)	0.6646(1)	0.029(1)	2.208		
Se(6)	1	-0.0844(3)	0.1882(1)	0.5014(2)	0.027(1)	1.917		

Na₂CdGe₂S₆

AgGaS ₂ ^{1a}	12.00	tetragonal	Li ₂ In ₂ SiSe ₆ ²⁰	Сс		
AgGaSe ₂ ^{1b}	-42/11		Li ₂ In ₂ GeS ₆ ²⁰		monoclinic	
AgGaTe ₂ ^{1c}			Li ₂ In ₂ GeSe ₆ ²⁰			
LiGaTe ₂ ²	LAZA		Na ₂ Hg ₃ Ge ₂ S ₈ ²¹	P4c2	tetragonal	
LiInTe ₂ ²	<i>1-42a</i>		$Na_2Hg_3Si_2S_8{}^{21}$			
LiAlTe ₂ ²			$Na_2Hg_3Sn_2S_8{}^{21}$			
$LiGaS_2^2$		orthorhombic	K ₂ Hg ₃ Ge ₂ S ₈ ²²	Aba2/C2	orthorhombic/monoclinic	
$LiInS_2^2$	D 21		$Rb_2Hg_3Ge_2S_8{}^{23}$	P21/c	monoclinic	
LiGaSe ₂ ²			$Rb_{2}Hg_{3}Sn_{2}S_{8}^{23}$			
LiInSe ₂ ²	Pna21		$Cs_2Hg_3Ge_2S_8{}^{23}$	<i>P</i> -1	triclinic	
$LiAlS_2^2$			$Cs_2Hg_3Sn_2S_8{}^{23}$			
LiAlSe ₂ ²			$KCd_4Ga_5S_{12}^{24}$		trigonal	
NaAsSe ₂ ³	Pca21		$RbCd_4Ga_5S_{12}{}^{24}$			
Na ₂ Ge ₂ S ₅ ⁴	Стст	anthanhanshia	$CsCd_4Ga_5S_{12}^{24}$	20		
Na ₂ Ge ₂ Se ₅ ⁵	Pna21	orthornomble	$CsMn_4In_5Te_{12}{}^{25}$	<i>K</i> 3		
KPSe ₆ ⁶	Do #21	anthanhanshia	$CsZn_4In_5Te_{12}^{25}$			
RbPSe ₆ ⁶	Pca21	orthornombic	$CsCd_4In_5Te_{12}^{25}$			
CsPSe ₆ ⁶	P2/n	monoclinic	Cs ₂ ZnGe ₃ S ₈ ²⁶	P21/c	monoclinic	
BaGa ₄ S ₇ ⁷	Pmn21	orthorhombic	Cs ₂ ZnGe ₃ Se ₈ ²⁶			
BaGa ₄ Se ₇ ⁸	_	monoclinic	Cs ₂ ZnGe ₃ Te ₈ ²⁶	P2 ₁ 2 ₁ 2 ₁	orthorhombic	
BaAl ₄ Se ₇ ⁹	Pc		Cs ₂ CdGe ₃ S ₈ ²⁶			
$SnGa_4S_7^{10}$			Cs ₂ CdGe ₃ Se ₈ ²⁶			
SnGa ₄ Se ₇ ¹⁰			Cs2MgGe3Se826			
PbGa ₄ S ₇ ²⁰			Ba ₃ GaS ₄ Cl ²⁷			
Cd ₄ SiS ₆ ¹¹			Ba ₃ GaS ₄ Br ²⁷		orthorhombic	
Cd ₄ SiSe ₆ ¹²	Ca	monoclinic	Ba ₃ GaSe ₄ Cl ²⁷			
$Cd_4GeS_6^{13}$			Ba ₃ InSe ₄ Cl ²⁷	I4/mcm	teragonal	
Cd ₄ GeSe ₆ ¹⁴			Ba2BiGaS528	Pnma	orthorhombia	
Hg ₄ SiS ₆ ¹⁵		monoclinic	Ba ₂ BiInS ₅ ²⁸	$Cmc2_1$	ormonionoic	
Hg ₄ SiSe ₆ ¹⁵	Cc		$Ba_4CuGa_5S_{12}^{29}$	$P\overline{42}_1c$	tetragonal	
Hg ₄ GeS ₆ ¹⁶			$Ba_4CuGa_5Se_{12}^{29}$			
Li ₂ ZnSnS ₄ ¹⁷			BaGa ₂ SiS ₆ ³⁰	R3	trigonal	
Li ₂ ZnGeSe ₄ ¹⁸	Pn		BaGa ₂ GeS ₆ ³⁰			
Li ₂ ZnSnSe ₄ ¹⁸		orthorhombic	BaGa ₂ SiSe ₆ ³⁰			
Li ₂ CdGeS ₄ ¹⁹	$Pmn2_1$		BaGa ₂ GeSe ₆ ³⁰			
Li ₂ CdSnS ₄ ¹⁹			PbGa ₂ SiSe ₆ ³¹	Сс	monoclinic	
Li ₂ In ₂ SiS ₆ ²⁰	Cc	monoclinic	PbGa ₂ GeSe ₆ ³¹	Fdd2	orthorhombic	

Table S2. A series of IR materials with structural transformation.

14220400206						
	dipole moment					
	magnitude			agnitude		
species	x (a)	y (b)	z (c)	debye	×10 ⁻⁴	
					esu·cm /Å ³	
$Cd(1)S_4$	6.80	0.00	-9.98	12.07	0.05	
$Ge(1)S_4$	-4.63	0.00	3.09	5.56	0.02	
$Ge(2)S_4$	1.64	0.00	16.68	16.76	0.06	
Unit cell	3.81	0.00	9.79	10.51	0.04	

Na ₂	CdC	e_2S_6

	dipole moment				
				magnitude	
species	x (a)	y (b)	z (c)	1.1	×10 ⁻⁴
				debye	esu∙cm /Å ³
CdSe4	-8.74	0.00	13.84	16.37	0.05
Ge(1)Se4	-2.17	0.00	-25.47	27.02	0.09
Ge(2)Se4	6.66	0.00	-6.04	11.55	0.04
Unit cell	-4.25	0.00	-17.67	35.57	0.12

Na₂CdGe₂Se₆

Fig. S1. Raman spectra for title compounds.

Fig. S2. SHG density calculation for $Na_2CdGe_2S_6$.

References

(a) A. O. Okorogu, S. B. Mirov, W. Lee, D. I. Crouthamel, N. Jenkins, A. Y. Dergachev, K. L. Vodopyanov and V. V. Badikov, *Opt. Commun.*, 1998, **155**, 307;
 (b) G. D. Boyd, F. G. Storz, J. H. McFee and H. M. Kasper, *IEEE J. Quantum Electron.*, 1972, **8**, 900; (c) D. Parker and D. J. Singh, *Phys. Rev. B.*, 2012, **85**, 125209.

2. L. Isaenko, I. Vasilyeva, A. Merkulov, A. Yelisseyev and S. Lobanov, J. Cryst. Growth., 2005, 275, 217.

3. J. A. Brehm, S. M. Young, F. Zheng and A. M. Rappe, *J. Chem. Phys.*, 2014, **141**, 204704.

4. J. Olivier Fourcade, M. Ribes, E. Philippot and M. Maurin, *Acad. Sci., Ser. IIc: Chim.*, 1971, **272**, 1964.

5. I. Chung, J. H. Song, J. I. Jang, A. J. Freeman and M. G. Kanatzidis, *J. Solid State Chem.*, 2012, **195**, 161.

6. J. I. Jang, A. S. Haynes, F. O. Saouma, C. O. Otieno, and M. G. Kanatzidis, *Opt. Mater. Exp.*, 2013, **3**, 1302.

7. X. Lin, G. Zhang and N. Ye, Cryst. Growth & Design., 2009, 9, 1186.

8. J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu and Y. Wu, *Inorg. Chem.*, 2010, **49**, 9212.

9. D. Mei, W. Yin, L. Bai, Z. Lin, J. Yao, P. Fu and Y. Wu, *Dalton Trans.*, 2011, **40**, 3610.

10. W. Khan, S. Azam, F. Shah, Solid State Sci., 2015, 48, 244.

11. X. Li, L. Kang, C. Li, Z. Lin, J. Yao and Y Wu, *J. Mater. Chem. C*, 2015, **3**, 3060.

12. E. Kaldis, L. Krausbauer and R. Widmer, J. Electrochem. Soc., 1967, 10, 1074.

13. M. Julien-Pouzolet and S. Jaulmest, Acta Crystallogr. Sect. C., 1995, 51, 1966.

14. (a) S. Kovrch, A. Nemcsics, Z. Labadi and S. Motrya, *Inorg. Mater.* 2002, 39, 108-112; (b) P. Quenez and O. Gorochov, *J. Cryst. Growth.*, 1974, 26, 55.

15. L. D. Gulay, I. D. Olekseyuk and O. V. Parasyuk, J. Alloys and Compd., 2002, **347**, 115.

16. J. Serment, G. Perez and P. Hagenmuller, Bull. Soc. Chim. Fr. 1968, 561.

17. J. W. Lekse, B. M. Leverett, C. H. Lake and J. A. Aitken, *J. Solid State Chem.*, 2008, **181**, 3217.

18. J. Zhang, D. J. Clark, J. A. Brant, C. W. Sinagra, Y. S. Kim, J. I. Jangb and J. A. Aitken, *Dalton. Trans.* 2015, **44**, 11212.

19. J. W. Lekse, M. A. Moreau, K. L. McNerny, J. Yeon, P. S. Halasyamani and J. A. Aitken, *Inorg. Chem.*, 2009, **48**, 7516.

20. W. Yin, K. Feng, W. Hao, J. Yao and Y. Wu, Inorg Chem., 2012, 51, 5839.

21. K. Wu, Z. Yang and S. Pan, Chem. Mater., 2016, 28, 2795.

22. J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borick, P. Cunningham, M. J. Rosker and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2003, **125**, 9484.

23. G. A. Marking, J. A. Hanko and M. G. Kanatzidis, *Chem. Mater.* 1998, **10**, 1191.

24. H. Lin, L. J. Zhou and L. Chen, Chem. Mater., 2012, 24, 3406.

25. H. Lin, Y. Liu, L. J. Zhou, H. J. Zhao and L. Chen, *Inorg. chem.*, 2016, **55**, 4470.

26. C. D. Morris, H. Li, H. Jin, C. D. Malliakas, J. A Peters, P. N. Trikalitis, A. J. Freeman, B. W. Wessels and M. G. Kanatzidis, *Chem. Mater.*, 2013, **25**, 3344.

27. K. Feng, W. Yin, Z. Lin, J. Yao and Y. Wu, Inorg. Chem., 2013, 52, 11503.

28. L. Geng, W. D. Cheng, C. S. Lin, W. L. Zhang, H. Zhang and Z. Z. He, *Inorg. chem.*, 2011, **50**, 5679.

29. S. M. Kuo, Y. M. Chang, I. Chung, J. I. Jang, B. H. Her, S. H. Yang, J. B. Ketterson, M. G. Kanatzidis and K. F. Hsu, *Chem. Mater.*, 2013, **25**, 2427.

30. W. Yin, K. Feng, R. He, D. Mei, Z. Lin, J. Yao and Y. Wu, *Dalton Trans.*, 2012, **41**, 5653.

31. Z. Z. Luo, C. S. Lin, H. H. Cui, W. L. Zhang, H. Zhang, H. Chen, Z. Z. He and W. D. Cheng, *Chem. Mater.*, 2015, **27**, 914.