Supplementary Information for

Comparative Electronic Structures of Nitrogenase FeMoco and FeVco

Julian A. Rees,^{a,b} Ragnar Bjornsson,^{a,c} Joanna K. Kowalska,^a Frederico A. Lima,^{a,d} Julia Schlesier,^e Daniel Sippel,^e Thomas Weyhermüller,^a Oliver Einsle,^{e*} Julie A. Kovacs^{b*} and Serena DeBeer^{a,f*}

^aMax Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany, E-mail: <u>serena.debeer@cec.mpg.de</u>; Tel:+49 208 306 3605

^bDepartment of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, United States

^cScience Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland

^dCentro Nacional de Pesquisa em Energia e Materiais Brazilian Synchrotron Light Laboratory - LNLS Rua Giuseppe Máximo Scolfaro, 10.000 13083-970 Campinas SP, Brazil

^eInstitute for Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University Freiburg, Germany ^fDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States

List of Figures

S1 – K β mainline XES spectra and first derivatives of Fe₂O₃

- S2 Full spectral window of Kα HERFD XAS spectra, with post-edge for normalization
- S3 First derivatives of Ka HERFD XAS spectra
- S4 First derivatives of Kβ mainline XES spectra
- S5 DFT-calculated localized orbitals of cubane cluster models
- S6 DFT-calculated localized orbitals of protein cofactors
- S7 DFT-calculated XAS spectra of proteins with varying oxidation states of VFe P-cluster

List of Tables

- S1 Activity of nitrogenase isozymes
- S2 Energies of Kβ mainline XES features
- S3 Calculated spin populations and bonding analyses

Optimized Coordinates

[VFe₃S₄Cl₃(DMF)₃]⁻

Fig. S1 K β mainline XES spectra (left) and first derivatives (right) of the Fe₂O₃ calibrant from three different synchrotron beamlines, showing identical peak positions.

Fig. S2 Fe K α -detected HERFD XAS spectra of the MoFe₃S₃ and VFe₃S₄ cubane clusters, MoFe, VFe, and FeMoco. The large spectral window includes the EXAFS region, which was normalized to a final intensity of 1.

Fig. S3 Smoothed first spectral moments of the Fe K α -detected HERFD XAS spectra of the MoFe₃S₃ and VFe₃S₄ cubane clusters, MoFe, and VFe. Cubane spectra have been vertically offset by 0.02.

Fig. S4 Smoothed first spectral moments of the mainline region of the Fe K β XES spectra of the MoFe₃S₃ and VFe₃S₄ cubane clusters, MoFe, VFe, FeMoco, and the P-cluster-only MoFe variant.

Fig. S5 Pipek-Mezey localized heterometallic bonding orbitals of the [MoFe₃S₄]³⁺ and [VFe₃S₄]²⁺ model cubanes

Fig. S6 Pipek-Mezey localized heterometallic bonding orbitals of FeMoco and FeVco

Fig. S7 TD-DFT-calculated XAS spectra of MoFe, VFe, and VFe with a one-electron oxidized P-cluster. For both the high-spin $(S = \frac{5}{2})$ and low-spin $(S = \frac{1}{2})$ cases, the changes to the second pre-edge peak are small compared to the perturbation due to a changing heterometal (VFe to MoFe). Also, changes to the first pre-edge peak are expected, in contrast to the experimental data.

Table S1 Literature values for enzyme activities of A. vinelandii molybdenum and vanadium nitrogenase. Values for usageand production during N2 reduction are in molar equivalents per N2, and approximate activities for CO reduction arereported as molar equivalents per protein per minute.

	•		
	N ₂	Mo Nitrogenase	V Nitrogenase
	MgATP Used	16	40
	<i>e</i> ⁻ used	8	12
	H ₂ produced	1	3 ^{<i>a</i>}
	Activity	1040	660
	TON	2230	112
	CO (eq. / min)		
	C_2H_4	0.006	7.5
	C ₂ H ₆	0.001	2.5
	C ₃ H ₈	0.002	1.5

 a It is noted that while this value has not been contradicted in the literature, a pressure-dependent study analogous to that of Simpson and Burris¹ has not been performed for the vanadium nitrogenase. Thus, we caution that this number is not as firmly established as the analogous H₂ production stoichiometry for the molybdenum isozyme.

Table S2 Energies of the K β mainline XES spectral features as determined from the first spectral moments. The Fe₂S₂ complexes were previously reported.⁵

	Κβ'	Κβ _{1,3}	ΔE_{main}
Mo Cubane	7048.0	7058.1	10.1
V Cubane	7048.0	7058.2	10.2
MoFe	7050.2	7059.7	9.5
VFe	7050.2	7059.7	9.5
FeMoco	7049.0	7058.1	9.1
P-cluster	7049.0	7060.0	11
Fe ₂ S ₂ Complexes			
Fe(III) ₂			13.4
Fe(II,III)			13.4
Fe(II) ₂			13.4

Table S3 Mulliken spin population and Mayer bond order analyses from the DFT calculations (BP86) for Mo and V cubanes,FeMoco, and FeVco

,								
Cubane Cluster Models			Protein Cofactors					
	[MoFe ₃	S ₄] ³⁺	[VFe ₃	S ₄] ²⁺	[MoFe ₇ S	5₀C]¹-	[VFe ₇ S	S ₉ C]²⁻
	Mulliken spin populations		Mulliken spin populations			าร		
	Mo	-0.22	V	-0.82	Мо	-0.13	V	-0.68
	Fe1	-2.78	Fe1	-3.04	Fe1	+3.02	Fe1	+3.12
	Fe2	+2.82	Fe2	+3.14	Fe2	+2.72	Fe2	+2.84
	Fe3	+2.82	Fe3	+3.14	Fe3	-2.47	Fe3	-2.70
					Fe4	-2.35	Fe4	-2.61
					Fe5	-2.31	Fe5	-2.59
					Fe6	+1.97	Fe6	+2.41
					Fe7	+2.00	Fe7	+2.53
Mayer bond orders			Mayer bond orders					
	Mo – Fe1	0.486	V – Fe1	0.447	Mo – Fe5	0.490	V – Fe5	0.448
	Mo – Fe2	0.514	V – Fe2	0.480	Mo – Fe6	0.537	V – Fe6	0.470
	Mo – Fe3	0.415	V – Fe3	0.480	Mo – Fe7	0.497	V – Fe7	0.393

Optimized Coordinates

The DFT-optimized coordinates for the 225-atom model of MoFe, the P-cluster, and the Mo cubane cluster are available in the SI from Bjornsson et al.⁶ The optimized coordinates of the 225-atom model of VFe can found in the SI of Rees et al.⁷ The optimized coordinates for the $[VFe_3S_4Cl_3(DMF)_3]^{-}V$ cubane cluster are below:

V	9.455748	-0.457301	2.149351
Fe	10.940228	1.743053	2.551326
Fe	8.472185	1.628859	3.415400
Fe	8.953574	1.772873	0.845867
S	10.161632	0.401666	4.165883
S	7.381389	0.447276	1.810355
S	9.486292	3.383944	2.369049
S	10.823996	0.600084	0.628039
Cl	13.096822	2.134259	2.978258
Cl	6.977963	2.042243	5.043279
Cl	8.142751	2.397494	-1.154520
0	11.021112	-1.942063	2.360513
С	12.206772	-1.623855	2.598005
Ν	13.201656	-2.511631	2.730035
С	14.558584	-2.062890	3.006218
С	12.964020	-3.941399	2.601853
0	8.474392	-2.026464	3.270923
С	7.640625	-1.756550	4.164332
Ν	7.020540	-2.683321	4.905457
С	6.065605	-2.288701	5.931132
С	7.276897	-4.103357	4.716967
0	8.981109	-1.877049	0.585783
С	8.522405	-1.495402	-0.514198
Ν	8.234212	-2.323632	-1.525993
С	7.708239	-1.801358	-2.779074
С	8.437701	-3.760153	-1.413397
Н	12.518174	-0.572355	2.716921
Н	15.237580	-2.383329	2.201714
Н	14.913798	-2.484530	3.958560
Н	14.570943	-0.968058	3.071453
Н	13.566727	-4.351644	1.777721
Н	13.243435	-4.455463	3.533741
Н	11.900176	-4.098181	2.396590
Н	7.359609	-0.717591	4.405493
Н	6.398843	-2.643058	6.918075
Н	5.986974	-1.194902	5.950158
Н	5.075501	-2.717736	5.715817
Н	7.662897	-4.543201	5.648657
Н	8.016663	-4.219501	3.918424
Н	6.346191	-4.621082	4.440633
Н	8.324720	-0.431178	-0.725804
Н	6.717396	-2.232730	-2.986029
н	7.617728	-0.710745	-2.706587
н	8.384911	-2.052041	-3.609729
н	7.483644	-4.288390	-1.559258
н	8.833164	-3.977721	-0.416061
н	9.150952	-4.100827	-2.178792

- (1) Simpson, F. B.; Burris, R. H. Sci. (New York, NY) 1984, 224, 1095–1097.
- (2) Burgess, B. K. Chem. Rev. **1990**, *90*, 1377–1406.
- (3) Lee, C. C.; Hu, Y.; Ribbe, M. W. Science 2010, 329, 642.
- (4) Hu, Y.; Lee, C. C.; Ribbe, M. W. Science **2011**, 333, 753–755.
- (5) Kowalska, J. K.; Hahn, A. W.; Albers, A.; Schiewer, C. E.; Bjornsson, R.; Lima, F. A.; Meyer, F.; DeBeer, S. *Inorg. Chem.* **2016**, *55*, 4485–4497.
- (6) Bjornsson, R.; Lima, F. A.; Spatzal, T.; Weyhermüller, T.; Glatzel, P.; Bill, E.; Einsle, O.; Neese, F.; DeBeer, S. *Chem. Sci.* 2014, *5*, 3096–3103.
- (7) Rees, J. A.; Bjornsson, R.; Schlesier, J.; Sippel, D.; Einsle, O.; DeBeer, S. Angew. Chemie Int. Ed. 2015, 54, 13249– 13252.