Electronic Supporting Information

Chemistry of CS₂- and SCNPh-Adducts of the Pyramidal Phosphinidene-Bridged Complex $[Mo_2Cp(\mu-\kappa^1:\kappa^1,\eta^5-PC_5H_4)(CO)_2(\eta^6-HMes^*)(PMe_3)]$

Isabel G. Albuerne, M. Angeles Alvarez, M. Esther García,* Daniel García-Vivó, and Miguel A. Ruiz.*

Computational Details

All DFT computations were carried out using the GAUSSIAN03 package,¹ in which the hybrid method B3LYP was used with the Becke three-parameter exchange functional,² and the Lee-Yang-Parr correlation functional.³ An accurate numerical integration grid (99 590) was used for all the calculations via the keyword Int=Ultrafine. Effective core potentials and their associated double- ζ LANL2DZ basis set were used for the metal atoms.⁴ The light elements (P, S, O, C, N and H) were described with the 6-31G* basis.⁵ Geometry optimizations were performed under no symmetry restrictions, and frequency analyses were performed for all the stationary points to ensure that minimum structures with no imaginary frequencies were achieved. For interpretation purposes, natural population analysis charges were derived from the natural bond order analysis of the data.⁶ Molecular orbitals and vibrational modes were visualized using the Molekel program.⁷

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision B.02;* Gaussian, Inc.: Wallingford, CT, 2004.
- (2) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- (3) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- (4) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- (5) (a) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213. (b) G. A. Petersson and M. A. Al-Laham, *J. Chem. Phys.*, 1991, 94, 6081. (c) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, *J. Chem. Phys.*, 1988, 89, 2193.
- (6) A. E. Reed, L. A. Curtis and F. Weinhold, Chem. Rev., 1988, 88, 899.
- (7) S. Portmann and H. P. Luthi, CHIMIA, 2000, 54, 766.

Optimized geometry of compound 2a.

Optimized geometry of compound 2b.

Parameter	Optimized		
Mo1 – P3	2.627	Mo1 – P3 – Mo2	143.7
Mo2 – P3	3.627	Mo1 – P3 – C22	110.7
Mo2 – S5	2.601	P4 – Mo1 – P3	138.6
P3 – C22	1.830	Mo1 – P3 – C11	113.9
P3 – C11	1.840	C11 – P3 – C22	98.7
C11 – S5	1.741	P3 – C11 – S6	122.9
C11 – S6	1.673	S6 – C11 – S5	120.1
Mo1 – C9	1.993	S5 – C11 – P3	116.6
Mo1-C10	1.964	C11 – S5 – Mo2	112.1
Mo1 – P4	2.490	C10-Mo1-C9	104.3
C9 – O7	1.165		
C10 - 08	1.169		

Table S1: DFT-Optimized Geometry for compound 2a (distances in Å, angles in deg.)

Table S2: DFT-Optimized Geometry for compound 2b (distances in Å, angles in deg.)

Parameter	Optimized		
Mo1 – P3	2.645	Mo1 – P3 – Mo2	143.8
Mo2 – P3	3.608	Mo1 – P3 – C21	110.8
Mo2 – S5	2.606	P4 – Mo1 – P3	139.2
P3 – C21	1.829	Mo1 – P3 – C10	110.3
P3 – C10	1.863	C10 – P3 – C21	97.9
C10 – S5	1.781	P3 – C10 – N90	117.6
C10 – N90	1.285	N90 – C10 – S5	124.8
Mo1 – C8	1.984	S5 – C10 – P3	117.3
Mo1 – C9	1.966	C10 – S5 – Mo2	109.8
Mo1-P4	2.484	C9 – Mo1 – C8	104.5
C8 – O6	1.167		
C9 – O7	1.169		

 Table S3: Selected molecular orbitals of compound 2a.

Contributions (%): Mo(1) 1, Mo(2) 59, P(3) 3, P(4) 0, CO's 0, C(11) 0, S(5) 1, S(6) 13, Other 22

Contributions (%): Mo(1) 38, Mo(2) 8, P(3) 0, P(4) 0, CO's 13, C(11) 2, S(5) 14, S(6) 15, Other 9

MO 172

-6.21

 $\sigma_{\text{M-S}} \textbf{+} \sigma_{\text{P-C}}$

Contributions (%): Mo(1) 8, Mo(2) 15, P(3) 8, P(4) 0, CO's 2, C(11) 4, S(5) 52, S(6) 3, Other 8

 Table S4: Selected molecular orbitals of compound 2b.

MO 193

-4.73

LP P(3) + LP S6

Contributions (%): Mo(1) 18, Mo(2) 4, P(3) 31, P(4) 0, CO's 5, C(10) 2, S(5) 11, N(90) 7, Other 22

MO 192 -5.13

LP N90 + π_{cc}(Ph)

Contributions (%): Mo(1) 16, Mo(2) 5, P(3) 5, P(4) 0, CO's 5, C(10) 2, S(5) 6, N(90) 15, Other 45

MO 191

-5.31

 $\pi_{\text{M-CO}}$ + LP S6 + LPN90

Contributions (%): Mo(1) 49, Mo(2) 2, P(3) 1, P(4) 0, CO´s 18, C(10) 1, S(5) 9, N(90) 7, Other 12

MO 190

-5.55

 $\pi_{\text{M-CO}}$ + $\sigma_{\text{M-P}}$

MO 189

-5.56

LP S5

MO 187

-6.23

 $\sigma_{\text{M-S}}$

Contributions (%): Mo(1) 47, Mo(2) 2, P(3) 14, P(4) 1, CO's 16, C(10) 1, S(5) 7, N(90) 1, Other 12

Contributions (%): Mo(1) 15, Mo(2) 14, P(3) 4, P(4) 0, CO's 7, C(10) 1, S(5) 31, N(90) 14, Other 14

Contributions (%): Mo(1) 5, Mo(2) 12, P(3) 7, P(4) 0, CO's 2, C(10) 3, S(5) 43, N(90) 4, Other 25

Contributions (%): Mo(1) 3, Mo(2) 1, P(3) 2, P(4) 3, CO's 1, C(10) 15, S(5) 6, N(90) 7, Other 62

 Table S5: Cartesian coordinates for the optimized structure of compound 2a.

Mo	14.87377	9.87405	4.56247
Mo	12.03367	15.06895	3.95557
P	13.94078	12.03461	3.39493
P	15.08035	8.93298	6.85854
S	14.57418	15.01520	3.40045
S	16.76424	13.12442	2.78297
0	16.01279	12.26275	6.28262
0	11.83513	9.62058	5.27112
C	15.56419	11.41913	5.61595
C	12.97068	9.77328	5.03810
С	15.17571	13.39011	3.23689
С	14.71978	8.70542	2.48927
н	13.79461	8.71060	1.92898
С	15.09735	7.76172	3.48605
н	14.52083	6.90351	3.80454
С	16.40687	8.12235	3.94698
н	16.99161	7.58104	4.68028
С	16.83780	9.26994	3.22986
Н	17.77345	9.79820	3.35089
С	15.79484	9.63605	2.33934
Н	15.82509	10.48458	1.67046
С	12.73484	12.88504	4.47783
С	12.98510	13.71586	5.65271
н	13.96047	13.93928	6.05867
С	11.75820	14.17362	6.15597
н	11.61360	14.81058	7.01851
С	10.73000	13.66926	5.29292
Н	9.67004	13.81763	5.42656
С	11.33010	12.84841	4.28693
Н	10.81205	12.29866	3.51347
С	12.43571	16.80882	2.40924
Н	13.38550	16.98699	1.92543
С	12.23211	17.39886	3.69373
С	10.99940	17.07855	4.34895
Н	10.78396	17.54462	5.30041
С	9.98547	16.31299	3.69987
Ċ	10.34241	15.60027	2.51784
Н	9.62945	14.91533	2.08105
С	11.55976	15.86768	1.80213
С	13.14263	18.49528	4.28169
С	13.53876	18.16586	5.73735
н	12.66296	18.03605	6.38331
н	14.13809	18.98323	6.15684
н	14.12821	17.24483	5.77785
С	14.43220	18.68839	3.45917
н	15.03517	17.77659	3.41960
н	15.04108	19.47346	3.92201
н	14.21705	19.00767	2.43259
С	12.35922	19.83298	4.25652
н	12.04859	20.08818	3.23643
н	12.98891	20.64877	4.63180
н	11.46005	19.79162	4.88175
С	8.53659	16.32090	4.23324

С	8.43962	16.42736	5.77126
Н	7.38530	16.43766	6.07003
Н	8.88594	17.35263	6.14902
Н	8.92282	15.58988	6.28225
С	7.69976	15.11430	3.75700
Н	8.12807	14.15447	4.06191
Н	7.58742	15.10024	2.66803
Н	6.69181	15.17875	4.18168
С	7.89538	17.60211	3.63034
Н	6.84837	17.68680	3.94673
Н	7.91987	17.57798	2.53537
Н	8.42457	18.50287	3.95986
С	11.75041	15.33345	0.37207
С	13.18283	15.57104	-0.14566
Н	13.41293	16.63869	-0.24088
Н	13.28688	15.12912	-1.14316
Н	13.93018	15.11349	0.50987
С	11.45811	13.81915	0.29580
Н	11.56188	13.47367	-0.73994
Н	10.43884	13.57471	0.61646
Н	12.15627	13.25438	0.92175
С	10.76318	16.08830	-0.55415
Н	10.94205	17.16960	-0.52292
Н	9.72089	15.91091	-0.26383
Н	10.88328	15.75564	-1.59246
С	14.57556	7.16297	7.05455
Н	14.68471	6.83521	8.09450
Н	15.19073	6.52249	6.41562
Н	13.53065	7.05131	6.74990
С	14.06941	9.76835	8.15855
Н	14.21373	9.29294	9.13503
Н	13.01194	9.72283	7.88445
Н	14.36254	10.81999	8.22254
С	16.76609	8.94937	7.62478
Н	17.12775	9.98072	7.67141
Н	17.46298	8.37240	7.00959
Н	16.74882	8.52749	8.63605

G (a.u.) = -3088.541182

 Table S6: Cartesian coordinates for the optimized structure of compound 2b.

Мо	14.81078	9.88010	4.39368
Мо	11.96582	15.07997	3.87174
Р	13.69193	11.97637	3.23293
Р	15.25720	9.01221	6.67818
S	14.46075	14.98966	3.12369
0	16.13207	12.35189	5.83044
0	11.86117	9.66748	5.42831
С	15.59825	11.46778	5.28621
С	12.96662	9.79886	5.07098
С	14.96807	13.29554	2.91426
С	14.50212	8.76374	2.31652
Н	13.54830	8.82730	1.81068
С	14.89305	7.77094	3.25820
Н	14.29766	6.92926	3.58642
С	16.23369	8.06631	3.66239
н	16.82977	7.48011	4.35085
C	16.67635	9.21959	2.95967
Н	17.64483	9.69386	3.04338
C	15.60603	9.65922	2.13/3/
Н	15.63572	10.53436	1.50401
C	12.66385	12.90606	4.42613
C	13.06459	13.77633	5.52930
Н	14.08424	13.99135	5.80998
C	11.91706	14.29786	6.14134
н	11.88805	14.97951	6.98103
C	10.78472	13./91//	5.42034
П	9.75150	13.97968	5.00523
C II	11.24599	12.90425	4.39784
п С	10.03024	12.33913	3.71205
C II	12.22089	16.74251	2.21216
	13.12444	10.89008	1.03882
c	12.15709	17.59106	5.4010Z
ц	10.90912	17.10721	4.20102 5 20625
C	0 20227	16 21 26 2	2 7/222
ĉ	10 1/1078	15 5/395	2 57250
н	9 10021	1/ 8/216	2.37333
Ċ	11 29536	15 77619	1 73513
c	13 09999	18 50707	3 93286
c	13 63074	18 23815	5 35780
н	12 81900	18 14039	6.08769
н	14 26771	19 06967	5 68392
н	14 21984	17 31636	5 38132
C	14.30698	18.65583	2.98517
Ĥ	14.89996	17.73835	2.92805
н	14.95926	19.45562	3.35445
н	13.99675	18.93266	1.97063
C	12.32069	19.84726	3.92314
Ĥ	11.91649	20.06028	2.92640
Н	12.98435	20.67468	4.20232
н	11.48380	19.83828	4.63079
С	8.50146	16.36173	4.39843
C	8.53597	16.58258	5.92687
н	7.51136	16.60582	6.31494
н	8.99857	17.53810	6.19358
н	9.07478	15.79121	6.45554
С	7.63591	15.12226	4.08508
Н	8.09616	14.18776	4.42007
н	7.43016	15.02883	3.01385

Н	6.66773	15.21615	4.58950
С	7.80080	17.59438	3.76108
Н	6.78511	17.70209	4.16156
Н	7.72913	17.48880	2.67307
Н	8.35096	18.51720	3.97502
С	11.35056	15.17999	0.31810
С	12.73309	15.37980	-0.33406
Н	12.95628	16.43944	-0.50515
Н	12.74943	14.88524	-1.31215
Н	13.53243	14.95477	0.28069
С	11.03946	13.66778	0.33122
Н	11.05009	13.27876	-0.69431
Н	10.04898	13.44995	0.74718
Н	11.78224	13.11904	0.91877
С	10.29027	15.90763	-0.54709
Н	10.47952	16.98723	-0.57664
Н	9.27689	15.75398	-0.15756
Н	10.31388	15.53174	-1.57745
С	14.73742	7.26364	6.99516
Н	14.96665	6.96134	8.02329
Н	15.24981	6.58751	6.30416
Н	13.66010	7.17485	6.82569
С	14.42333	9.91582	8.05632
Н	14.66720	9.46820	9.02620
Н	13.34054	9.89080	7.90622
Н	14.74609	10.96074	8.04954
С	17.02029	9.00844	7.24637
Н	17.40748	10.03122	7.21414
Н	17.62897	8.39356	6.57659
Н	17.11111	8.62098	8.26750
Ν	16.10686	12.92190	2.44962
С	17.14166	13.80430	2.09146
С	17.89458	14.47854	3.06939
С	17.51467	13.92962	0.74297
С	18.98288	15.26705	2.69906
Н	17.61750	14.36639	4.11319
С	18.59873	14.72873	0.38077
Н	16.94189	13.39597	-0.01059
С	19.34073	15.40119	1.35474
Н	19.55526	15.78114	3.46790
Н	18.86765	14.82132	-0.66899
Н	20.18983	16.01719	1.07073
		-	P -a
		-	

G(a.u.) = -2976.657093

Table S7: Mulliken Charges for compound 2a.

1	Мо	-0.373194	55 н 0.14719	3
2	Мо	-0.228399	56 H 0.15250	3
3	Ρ	0.436524	57 H 0.16414	6
4	Ρ	0.580250	58 C -0.47245	1
5	S	0.097042	59 н 0.16394	7
6	S	-0.219922	60 н 0.15241	.7
7	0	-0.293008	61 н 0.14769	5
8	0	-0.310137	62 C -0 44366	;9
9	C	0.213053	63 H 0 14468	1
10	C	0.205936	64 H 0.15797	6
11	C	-0 371417	65 H 0 15619	12
12	C	-0 137925	66 C 0 04484	6
13	ц	0.173644	67 C -0 48267	8
11	C	-0 1/5608		
15		-0.143000		ש ר
1 G	п	0.150705		2
17		-0.138795	70 H 0.20091 71 G 0.47251	. 3
1 /	H	0.149654	/1 C -0.4/251	.9
18	С	-0.10856/	/2 H 0.13698	8
19	Н	0.185137	73 H 0.13396	,9
20	С	-0.138616	74 H 0.20822	1
21	Η	0.203230	75 C -0.44029	5
22	С	-0.157448	76 н 0.14792	.2
23	С	-0.159536	77 н 0.13572	8
24	Н	0.199306	78 н 0.14156	6
25	С	-0.090458	79 C -0.63140	9
26	Н	0.164002	80 H 0.17660	3
27	С	-0.206400	81 H 0.18449	7
28	Н	0.146942	82 H 0.20311	. 6
29	С	-0.103500	83 C -0.63047	4
30	Н	0.171647	84 H 0.17103	2
31	С	-0.254440	85 H 0.20415	7
32	Н	0.181759	86 н 0.20501	.3
33	С	0.153974	87 C -0.63077	8
34	С	-0.282414	88 H 0.20924	1
35	Н	0.142616	89 н 0.18413	8
36	С	0.223932	90 н 0.17356	8
37	C	-0.299310	Sum of Mulliken char	
38	H	0.144910		900 0.00
39	С	0.165894		
40	C	0 044707		
<u>10</u>	C	-0 460255		
12	с ц	0.1/1028		
13	и П	0.141920		
ч.) Л.Л	и П	0.137204		
44	п	0.190023		
40 16	U U	-0.40022/		
40	п	0.202249		
4/	п	U.14UZ9/		
48	н	0.141505		
49	C	-0.443639		
50	H	U.150895		
51	H	0.142301		
52	Н	0.136965		
53	С	0.035267		
54	С	-0.467477		

Table S8: Mulliken Charges for compound 2b.

1	Мо	-0.369680	55 H 0.152295	
2	Мо	-0.221070	56 H 0.164960	
3	Ρ	0.400837	57 C -0.472050	
4	Ρ	0.573764	58 H 0.164770	
5	S	-0.007489	59 H 0.152255	
6	0	-0.306346	60 H 0.146991	
7	0	-0.309764	61 C -0.443634	
8	Ċ	0 207867	62 H 0 144066	
9	C	0.204687	63 H 0.157818	
10	C	-0 104351	64 H 0 156545	
11	C	-0 145630	65 C 0 046449	
12	ч	0.176479	66 C -0.482323	
12 12	C	-0 1305/3	67 U 0 139766	
11		-0.139343	60 H 0.136760	
14	Н	0.160576	68 H 0.136256	
15	C	-0.155300	69 H 0.204905	
16	Н	0.148480	/0 C -0.4/4128	
17	С	-0.118903	71 H 0.134895	
18	Η	0.177885	72 H 0.133352	
19	С	-0.143240	73 H 0.210201	
20	Н	0.203560	74 C -0.439915	
21	С	-0.149914	75 н 0.147339	
22	С	-0.154595	76 н 0.135486	
23	Н	0.198132	77 H 0.140091	
24	С	-0.088633	78 C -0.630352	
25	Н	0.163030	79 Н 0.175052	
26	С	-0.211558	80 H 0.183880	
27	Н	0.145473	81 H 0.203158	
28	С	-0.105655	82 C -0.629937	
29	Н	0.171383	83 H 0.169987	
30	С	-0.243681	84 H 0.203908	
31	H	0.182544	85 H 0.203513	
32	С	0.149088	86 C -0 629517	
22	C	-0 284413	87 H 0 206384	
34	ч	0 142389	88 H 0 183255	
25 25	C	0.227106	89 H 0 172829	
36	C	-0 303768	90 N _0 /25921	
27		-0.303700	90 N = 0.423921	
27 20	п	0.143304	$91 \ C \ 0.232079$	
20	C	0.101723	92 C -0.144100	
39		0.046319	95 C -0.156778	
40	C	-0.461384	94 C -0.140408	
41	H	0.1413/1	95 H 0.143725	
42	H	0.135452	96 C -0.13/805	
43	Н	0.198938	97 H 0.119910	
44	С	-0.486571	98 C -0.131735	
45	Н	0.205237	99 H 0.115205	
46	Η	0.138481	100 H 0.114857	
47	Н	0.140590	101 H 0.111235	
48	С	-0.443469	Sum of Mulliken charges	= 0.000
49	Н	0.150420		
50	Н	0.141188		
51	Н	0.136456		
52	С	0.035526		
53	С	-0.468380		
54	Н	0.146724		

Table S9: Natural Charges for compound 2a.

Mo	1	-0 47887	C	54	-0 66306
Mo	1 2	0.4/00/			0.00500
MO	2	0.14023	r. I		0.23004
P	3	0.66397	E	1 56	0.22983
Р	4	1.21954	F	I 57	0.22962
S	5	0.06119	C	58	-0.66798
S	6	-0.12535	H	I 59	0.23014
0	7	-0.47937	H	I 60	0.23271
0	8	-0.49471	F	I 61	0.23848
С	9	0.56483	C	c 62	-0.65756
C	10	0 55519	F	i 63	0 23288
C	11	-0 67579	L	и 6Л	0.23683
C	10	0.20505	I. T	1 07 1 65	0.25005
	12	-0.29303	I.		0.23321
Н	13	0.2/4/3			-0.05268
C	14	-0.30959	Ĺ	: 6/	-0.6/55/
Н	15	0.26562	H	I 68	0.22522
С	16	-0.28375	H	I 69	0.23476
Н	17	0.25661	H	I 70	0.25657
С	18	-0.29015	C	c 71	-0.66141
Н	19	0.28143	F	I 72	0.22994
С	20	-0.25568	H	I 73	0.21723
н	21	0.28930	F	1 74	0.25227
C	22	-0 40053	-	- 75	-0 65749
C	22	-0 24103		, , , , , , , , , , , , , , , , , , ,	0.03126
	23	-0.24103	r.	1 70	0.23120
Н	24	0.28517			0.22422
C	25	-0.26196	F	4 /8	0.23175
Н	26	0.26784	C	2 79	-1.00678
С	27	-0.25657	H	I 80	0.24790
Η	28	0.25514	H	H 81	0.25413
С	29	-0.24788	H	H 82	0.26521
Н	30	0.27565	C	2 83	-1.00729
С	31	-0.19534	H	I 84	0.24456
Н	32	0.27678	F	1 8.5	0.26741
C	33	-0.06600	- F	1 86	0 26809
C	31	-0.23054	1	1 00 7 97	-1 01162
	24	-0.23934	C. T		-1.01102
Н	30	0.26155	F.	1 88	0.269/3
С	36	-0.01344	F	89	0.25445
С	37	-0.24023	F	I 90	0.24585
Н	38	0.26345	=====		
С	39	-0.06540	* TC	otal *	0.00000
С	40	-0.05289			
С	41	-0.66054			
Н	42	0.22028			
Н	43	0.22951			
н	44	0.24943			
C	Δ5	-0 67669			
с ц	16	0.07000			
п т	40 47	0.23507			
н	4/	0.23364			
Н	48	0.22/25			
С	49	-0.65809			
Н	50	0.23242			
Н	51	0.23230			
Η	52	0.22356			
		0 0 0 0 0 1			

Table S10: Natural Charges for compound 2b.

Мо	1	-0.48239	Н	54	0.23670
MO	2	0.15848	Н	55	0.23000
Р	3	0.63271	H	56	0.22982
Р	4	1.21778	С	57	-0.66748
S	5	-0.08494	Н	58	0.23043
0	6	-0.49216	Н	59	0.23243
0	7	-0.49467	Н	60	0.23788
С	8	0.56296	C	61	-0.65736
С	9	0.55596	Н	62	0.23249
С	10	-0.16526	Н	63	0.23670
С	11	-0.29353	Н	64	0.23534
Η	12	0.27600	С	65	-0.05204
С	13	-0.30954	С	66	-0.67530
Н	14	0.26642	Н	67	0.22514
С	15	-0.28119	Н	68	0.23277
Н	16	0.25558	Н	69	0.25609
С	17	-0.29530	С	70	-0.66167
Н	18	0.27648	Н	71	0.22868
С	19	-0.26226	H	72	0.21699
H	20	0.29116	 H	73	0.25308
C	21	-0 40442	C	74	-0 65742
C	22	-0 23317	С Н	75	0.23091
ц	22	0.23317	11 11	76	0.220091
пС	23	-0.26462	n u	70	0.22409
	24	-0.20402	п	7 7 0 7 0	1 00716
п	25	0.20723	C	70	-1.00/16
	20	-0.25815	н	/9	0.24009
H	27	0.25430	Н	80	0.25370
C	28	-0.24559	Н	81	0.26512
H	29	0.27529	C	82	-1.00659
C	30	-0.19048	Н	83	0.24387
Н	31	0.27745	Н	84	0.26/33
С	32	-0.06/05	Н	85	0.26/23
С	33	-0.24009	С	86	-1.01096
Η	34	0.26140	Н	87	0.26794
С	35	-0.01195	Н	88	0.25395
С	36	-0.24211	Н	89	0.24524
Η	37	0.26291	N	90	-0.52356
С	38	-0.06883	С	91	0.15002
С	39	-0.05248	С	92	-0.25190
С	40	-0.66070	С	93	-0.25294
Η	41	0.21994	С	94	-0.23043
Η	42	0.22845	Н	95	0.24422
Η	43	0.25016	С	96	-0.23062
С	44	-0.67640	Н	97	0.23400
Н	45	0.25507	С	98	-0.26165
Н	46	0.23457	Н	99	0.22948
Н	47	0.22686	Н	100	0.22929
С	48	-0.65787	Н	101	0.22821
Н	49	0.23212	======		
Η	50	0.23164	* Tot	tal *	0.00000
Н	51	0.22323	10		
C	52	-0.05962			
C	53	-0.66371			
-					

С	1	n
З	т	5

	compound 2a	compound 2b
V _{CO,symm} .	2008 (25)	2000 (20)
$\mathcal{V}_{ extsf{CO}, extsf{asymm}}$.	1953 (100)	1947 (100)
$V_{\sf CN}$	-	1615 (80)

Table S11: DFT/B3LYP-calculated stretching wavenumbers v(cm ⁻¹) and
relative intensities.

Figure S1. ${}^{31}P{}^{1}H$ NMR spectrum (162.12 MHz, C₆D₆) of compound 2b.

Figure S2. ¹H NMR spectrum (400.13 MHz, C_6D_6) of compound **2b**. Resonances marked with an asterisk correspond to residual toluene and C_6D_5H in the solution.

Figure S3. ³¹P{¹H} NMR spectrum (162.12 MHz, C_6D_6) of the crude solid compound **3b** prepared as described in the text. Resonances marked with an asterisk correspond to unreacted compound **2b**.

Figure S4. ¹H NMR spectrum (400.13 MHz, C_6D_6) of crude compound **3b**. Resonances marked with an asterisk correspond to residual toluene and C_6D_5H in the solution. Resonances marked with the symbol \blacklozenge correspond to unreacted compound **2b**.

Figure S5. ${}^{31}P{}^{1}H$ NMR spectrum (162.12 MHz, CD₂Cl₂) of compound 4.

Figure S6. ¹H NMR spectrum (400.13 MHz, CD_2Cl_2) of compound **4**. . Resonances marked with an asterisk correspond to residual tetrahydrofuran and $CHDCl_2$ in the solution.

Figure S7. ${}^{31}P{}^{1}H$ NMR spectrum (162.12 MHz, CD₂Cl₂) of compound 6a.

Figure S8. ¹H NMR spectrum (400.13 MHz, CD_2Cl_2) of compound **6a**. Resonances marked with an asterisk correspond to residual petroleum ether and $CHDCl_2$ in the solution.

Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum (162.12 MHz, CD₂Cl₂) of compound 7.

Figure S10. ¹H NMR spectrum (400.13 MHz, CD_2Cl_2) of compound **7**. The resonance marked with an asterisk corresponds to residual CHDCl₂ in the solution.