Supplementary Information

Effect of coordination geometry on the magnetic properties of a series of Ln_2 and Ln_4 clusters

Amaleswari Rasamsetty,^a Chinmoy Das,^b Maheswaran Shanmugam,^b E. Carolina Sañudo^c

Viswanathan Baskar*a

^a School of Chemistry, University of Hyderabad, Hyderabad 500046, India

^bDepart ment of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India

^c Departament de Química Inorgànica i Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Diagonal 645 08028, Barcelona, SPAIN.

vbsc@uohyd.ernet.in

Viswanathan Baskar (Corresponding Author), School of Chemistry, University of Hyderabad, Hyderabad 500046, India. E.Mail: <u>vbsc@uohyd.ernet.in</u>, Ph.No: +91-40-66794825, Fax No. +91-40-23012460

Figure S1. Molecular Structure of 1, (hydrogen atoms on carbon atom are omitted for clarity).

Figure S2. Molecular Structure of 3, (hydrogen atoms on carbon atom are omitted for clarity).

Figure S3. Molecular Structure of 4, (hydrogen atoms on carbon atom are omitted for clarity).

Figure S4. Molecular Structure of 6, (hydrogen atoms on carbon atom are omitted for clarity).

 Table S1. Summary of SHAPE analysis for complex 2 and 5.

Shape analysis:

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu

Complex 2

S. No.	Geometry	CShM value for Dy1	CShM value for Dy3
1	Octagon(D8h)	30.499	30.354
2	Heptagonal pyramid(C7v)	23.324	23.230
3	Hexagonal bipyrami(D6h)	16.074	15.755
4	Cube(Oh)	11.044	11.458
5	Square antiprism(D4d)	1.474	1.410
6	Triangular dodecahedron(D2d)	1.607	1.281
7	Johnson gyrobifastigium J26(D2d)	14.578	13.992
8	Johnson elongated triangular bipyramid J14(D3h)	29.407	29.560
9	Biaugmented trigonal prism J50(C2v)	2.055	2.202
10	Biaugmented trigonal prism(C2v)	1.540	1.670
11	Snub diphenoid J84(D2d)	3.868	3.807
12	Triakis tetrahedron(Td)	11.794	12.090
13	Elongated trigonal bipyramid(D3h)	24.511	24.452

Complex 5

S. No.	Geometry	CShM value for Dy1
1	Octagon(D8h)	30.595
2	Heptagonal pyramid(C7v)	22.709
3	Hexagonal bipyrami(D6h)	15.856
4	Cube(Oh)	10.0183
5	Square antiprism(D4d)	0.745
6	Triangular dodecahedron(D2d)	1.889
7	Johnson gyrobifastigium J26(D2d)	14.116
8	Johnson elongated triangular bipyramid J14(D3h)	27.296
9	Biaugmented trigonal prism J50(C2v)	2.507
10	Biaugmented trigonal prism(C2v)	1.828
11	Snub diphenoid J84(D2d)	4.552
12	Triakis tetrahedron(Td)	10.990
13	Elongated trigonal bipyramid(D3h)	22.665

Figure S5. PXRD of compounds 1-6

	Dy-O _{hydroxy}	Dy-O _{alkoxy}	Dy-Dy Å	Dy-O-Dy °	$U_{\rm eff}$
	Å	Å			
$[Dy_4(\mu_3-OH)_4(L)_4(\mu_2-piv)_4(MeOH)_4]$	2.353-2.382		3.74-3.83	104.54-108.51	SMM
					(maxima
					is
					observed
					below 2K
					level)
$[Dy_4(L)_4(\mu_2 - \eta^1 \eta^1 Piv)_2] \cdot 4H_2O \cdot 6CH_3OH$		2.36-2.49	3.68-4.15	99.20-115.10	73 K ¹
[Dy ₄ (µ ₃ -	2.33-2.40		3.72-3.85	103.63-110.1	40.2 K ²
OH) ₄ (isonicotinate) ₆ (py)(CH ₃ OH) ₇](ClO ₄) ₂ ·py·4C					
H ₃ OH					
Dy ₈ (HL) ₁₀ (C ₆ H ₄ NH ₂ COO) ₂ (µ ₃ -	2.31-2.40		3.67-3.85	102.5-109.50	
$OH_{8}(OH_{2}(NO_{3})_{2}(H_{2}O)_{4}]$					SMM ³
$[Dy_4(\mu_3-OH)_4(na)(pyzc)]n$	2.343-2.362		3.75-3.78	106.15-107.23	39.6 K ⁴
$[Dy_4(\mu_3-OH)_2(\mu_3-O)_2(cpt)6(MeOH)6(H2O)]$	2.31-2.37		3.74-3.84	103.7-108.9	SMM ⁵
$[Dy_4(OH)_4(TBSOC)_2(H_2O)_4(CH_3OH)_4] \cdot 4H_2O$	2.33-2.36		2.57-2.73	105.7-107.9	22.9 K ⁶

Table S2. Bond Distances (Å) and Bond angles (°) comparison table with literature reports

	Ln = Gd(1)	Ln = Dy (2)	Ln = Ho(3)
Ln(1)-O(8)	2.321(3)	2.331(3)	2.278(6)
Ln(1)-O(5)	2.338(3)	2.315(3)	2.295(5)
Ln(1)-O(10)	2.382(.3)	2.371(3)	2.341(5)
Ln(1)-O(3)	2.395(3)	2.364(3)	2.363(6)
Ln(1)-O(2)	2.421(3)	2.351(3)	2.364(6)
Ln(1)-O(10)*	2.400(3)	2.367(3)	2.359(5)
Ln(1)-O(11)	2.416(3)	2.372(3)	2.380(5)
Ln(1)-O(7)	2.504(3)	2.489(3)	2.469(6)
Ln(2)-O(6)*	2.339(3)	2.311(3)	2.299(5)
Ln(2)-O(9)	2.360(3)	2.295(3)	2.323(5)
Ln(2)-O(14)	2.379(3)	2.367(3)	2.347(5)
Ln(2)-O(11)	2.391(3)	2.353(3)	2.361(5)
Ln(2)-O(15)	2.397(3)	2.379(3)	2.343(6)
Ln(2)-O(10)	2.411(3)	2.382(3)	2.371(5)
Ln(2)-O(11)*	2.397(3)	2.382(3)	2.355(5)
Ln(2)-O(12)	2.516(3)	2.479(3)	2.477(6)
O(8)-Ln(1)-O(5)	101.58(12)	102.17(12)	100.4(2)
O(8)-Ln(1)-O(10)	85.68(11)	83.33(11)	86.34(19)
O(5)-Ln(1)-O(10)	142.85(11)	144.11(12)	143.42(19)
O(8)-Ln(1)-O(3)	79.90(12)	84.37(12)	84.84(19)
O(8)-Ln(1)-O(10)*	144.28(11)	144.29(11)	144.59(19)
O(5)-Ln(1)-O(10)*	83.56(11)	86.15(11)	84.21(18)
O(10)-Ln(1)-O(10)*	70.87(12)	70.97(13)	70.92(2)
O(3)-Ln(1)-O(10)*	134.55(11)	107.92(11)	108.77(18)
O(8)-Ln(1)-O(11)	77.30(12)	78.36(11)	77.38(19)
O(5)-Ln(1)-O(11)	76.73(11)	77.14(11)	76.76(18)
O(10)-Ln(1)-O(11)	69.37(11)	69.22(11)	69.70(17)
O(6)*1-Ln(2)-O(10)	77.07(11)	77.00(11)	77.34(18)

Table S3. Selected Bond Distances (Å) and Bond angles (°) for 1-6

O(9)-Ln(2)-O(10)	78.05(11)	77.50(12)	78.52(19)
O(14)-Ln(2)-O(10)	138.30(11)	137.73(11)	136.49(17)
O(11)-Ln(2)-O(10)	69.32(11)	69.38(11)	69.52(17)
O(15)-Ln(2)-O(10)	136.27(11)	134.85(11)	137.48(18)
O(11)*-Ln(2)-O(10)	69.60(11)	69.27(11)	69.72(17)
O(14)-Ln(2)-O(12)	76.37(11)	76.70(11)	72.57(19)
O(11)-Ln(2)-O(12)	107.97(11)	68.10(11)	109.01(18)
O(15)-Ln(2)-O(12)	71.77(11)	73.22(12)	75.95(19)
O(11)*-Ln(2)-O(12)	67.34(11)	108.41(11)	67.29(17)
O(10)-Ln(2)-O(12)	134.73(11)	135.29(11)	134.52(18)
Ln(1)-O(10)-Ln(2)	108.18(12)	107.58(12)	108.20(2)
Ln(1)-O(11)-Ln(2)	107.74(12)	108.51(12)	107.27(19)
Ln(1)*-O(10)-Ln(2)	107.71(12)	107.89(12)	107.90(2)
Ln(1)-O(10)-Ln(1)*	104.85(12)	104.82(12)	104.71(19)
Ln(1)-O(11)-Ln(2)*	107.64(12)	107.72(12)	107.68(19)
Ln(2)-O(11)-Ln(2)*	105.02(12)	104.54(12)	104.45(19)

	Ln = Gd (4)	Ln = Dy (5)	Ln = Ho(6)
Ln(1)-O(3)	2.375(11)	2.301(2)	2.294(2)
Ln(1)-O(6)	2.335(10)	2.321(2)	2.3128(18)
Ln(1)-O(6)*	2.356(10)	2.313(2)	2.3029(18)
Ln(1)-O(2)	2.332(11)	2.343(2)	2.3372(19)
Ln(1)-O(10)	2.357(11)	2.336(2)	2.3134(19)
Ln(1)-O(9)	2.350(11)	2.324(2)	2.323(2)
Ln(1)-O(5)	2.455(11)	2.438(2)	2.4216(19)
Ln(1)-O(7)	2.463(11)	2.436(2)	2.294(2)
O(3)-Ln(1)-O(6)*	146.94(4)	141.19(8)	141.15(7)
O(3)-Ln(1)-O(6)	140.19(4)	84.45(7)	84.24(7)
O(3)-Ln(1)-O(2)	71.78(4)	72.34(8)	72.69(7)
O(6)-Ln(1)-O(2)	84.50(4)	140.57(7)	145.69(7)
O(6)*-Ln(1)-O(2)	140.60(4)	145.94(7)	140.59(7)

O(3)-Ln(1)-O(10)	119.26(4)	69.74(8)	106.41(7)
O(6)-Ln(1)-O(10)	78.95(4)	78.80(7)	85.83(7)
O(6)*-Ln(1)-O(10)	79.05(4)	79.70(8)	142.88(7)
O(2)-Ln(1)-O(10)	69.58(4)	119.70(8)	75.58(7)
O(3)-Ln(1)-O(9)	75.80(4)	105.98(8)	69.85(8)
O(6)-Ln(1)-O(9)	142.720(4)	142.72(7)	79.66(7)
O(6)*-Ln(1)-O(9)	86.00(4)	85.86(7)	78.66(7)
O(2)-Ln(1)-O(9)	105.20(4)	75.65(8)	120.08(7)
O(10)-Ln(1)-O(9)	71.48(4)	72.03(8)	72.42(7)
O(3)-Ln(1)-O(5)*	75.87(4)	144.98(8)	144.75(7)
O(6)-Ln(1)-O(5)*	115.65(4)	115.84(7)	115.96(7)
O(6)*-Ln(1)-O(5)*	73.00(4)	73.40(7)	73.61(6)
O(2)-Ln(1)-O(5)*	146.10(4)	74.43(7)	73.93(7)
O(10)-Ln(1)-O(5)*	138.02(4)	139.08(8)	75.53(7)
O(9)-Ln(1)-O(5)*	75.85(4)	75.76(8)	139.32(7)
O(3)-Ln(1)-O(7)	74.14 (4)	80.18(8)	80.11(8)
O(6)-Ln(1)-O(7)	70.56(4)	70.86(7)	70.98(6)
O(6)*-Ln(1)-O(7)	111.45(4)	110.94(7)	110.90(7)
O(2)-Ln(1)-O(7)	80.20(5)	74.02(7)	73.82(7)
O(10)-Ln(1)-O(7)	138.71(4)	138.94(8)	145.04(7)
O(9)-Ln(1)-O(7)	145.92(4	145.39(7)	139.00(7)

Figure S6. Alternating current magnetic susceptibility measurement performed on polycrystalline samples of **2** showing the temperature dependent in-phase $((\chi_M))$ (panel A) and out-of-phase susceptibility signals (χ_M) (panel B) in the absence of external magnetic field.

Figure S7. Isothermal field sweep measurement performed on polycrystalline sample of complex 2.

S.	Temperature	χs	χ _T	τ	α	residual
No.	(K)					
1	2.0	0.485583E+01	0.213361E+02	0.102857E-02	0.371419E+00	0.734713E+01
2	2.2	0.489822E+01	0.199923E+02	0.908660E-03	0.352661E+00	0.677026E+01
3	2.4	0.483345E+01	0.185235E+02	0.791095E-03	0.337465E+00	0.545196E+01
4	2.6	0.475222E+01	0.173092E+02	0.706296E-03	0.325677E+00	0.444805E+01
5	2.8	0.467057E+01	0.162357E+02	0.638803E-03	0.314907E+00	0.375707E+01
6	3.0	0.458311E+01	0.152866E+02	0.582108E-03	0.305846E+00	0.311194E+01
7	3.2	0.450158E+01	0.144405E+02	0.533096E-03	0.297002E+00	0.263548E+01
8	3.4	0.442209E+01	0.136805E+02	0.489626E-03	0.289195E+00	0.221655E+01
9	3.6	0.434306E+01	0.129886E+02	0.448673E-03	0.281722E+00	0.185598E+01
10	4.0	0.421539E+01	0.117968E+02	0.376768E-03	0.266478E+00	0.127939E+01
11	5.0	0.396428E+01	0.956903E+01	0.222501E-03	0.229217E+00	0.403521E+00
12	6.0	0.376298E+01	0.804631E+01	0.110622E-03	0.200699E+00	0.700955E-01
13	7.0	0.344384E+01	0.694132E+01	0.452781E-04	0.203925E+00	0.816926E-02
14	8.0	0.409642E+01	0.610494E+01	0.340558E-04	0.182404E+00	0.692859E-02

Table S4. Fitting parameters for Cole-Cole plot for complex 2 (Optimum field of 500 Oe)

 Table S5. Fitting parameters for Cole-Cole plot for complex 5 (absence of bias field)

S.	Temperature	χs	χ _T	τ	α	residual
No.	(K)					
1	2.0	0.614221E+00	0.183188E+02	0.710361E-02	0.208097E+00	0.824204E+00
2	2.2	0.581461E+00	0.164895E+02	0.649717E-02	0.209542E+00	0.612107E+00
3	2.4	0.560337E+00	0.146505E+02	0.586349E-02	0.210852E+00	0.114670E+01
4	2.6	0.446823E+00	0.132122E+02	0.518833E-02	0.210901E+00	0.491779E+00
5	2.8	0.485631E+00	0.120152E+02	0.474652E-02	0.207704E+00	0.381005E+00
6	3.0	0.458659E+00	0.110055E+02	0.425951E-02	0.204777E+00	0.329082E+00
7	3.2	0.441390E+00	0.101555E+02	0.379568E-02	0.203325E+00	0.169764E+00
8	3.4	0.424599E+00	0.941623E+01	0.339249E-02	0.200194E+00	0.129646E+00
9	3.6	0.406443E+00	0.877422E+01	0.301435E-02	0.196792E+00	0.944658E-01
10	4.0	0.372370E+00	0.771428E+01	0.235163E-02	0.188963E+00	0.446970E-01
11	5.0	0.290246E+00	0.590085E+01	0.118066E-02	0.172061E+00	0.565398E-02
12	6.0	0.224505E+00	0.478510E+01	0.575295E-03	0.163180E+00	0.572334E-03
13	7.0	0.178637E+00	0.401860E+01	0.280481E-03	0.167784E+00	0.830973E-03
14	8.0	0.188554E+00	0.346312E+01	0.134422E-03	0.183680E+00	0.103577E-02

References:

1) S. Das, A. Dey, S. Biswas, E. Colacio and V. Chandrasekhar, *Inorg. Chem.*, 2014, **53**, 3417-3426.

2) Y. J. Gao, G. F. Xu, L. Zhao, J. Tang and Z. L. Liu, Inorg. Chem. 2009, 48, 11495–11497.

3) H. S. Ke, P. Gamez, L. Zhao, G. F. Xu, S. F. Xue and J. Tang, *Inorg. Chem.* 2010, 49, 7549–7557.

4) Y. Li, J.-W. Yu, Z.-Y. Liu, E.-C. Yang and X.-J. Zhao, Inorg. Chem. 2015, 54, 153-160.

5) D. Savard, P.-H. Lin, T. J. Burchell, I. Korobkov, W. Wernsdorfer, R. Clérac and M. Murugesu, *Inorg. Chem.*, 2009, **48**, 11748–11754.

6) C.-M. Liu, D.-Q. Zhang, X. Hao and D.-B. Zhu, Cryst. Growth Des., 2012, 12, 2948–2954.