Self-Assembly and Anion sensing of Metal-organic [M6L2] Cages from Fluorescent Triphenylamine Tri-pyrazoles with Dipalladium(II,II) Corners

Table of Contents

- NMR and MS data
 ¹H NMR and ¹³C NMR of all the compounds
 2D COSY NMR
 ESI-MS
- X-ray diffraction measurement
 Crystal structures data
 ORTEP diagram of the molecular structures
- 3. Research for fluorescence properties
- 4. References

Supporting Information

Materials

All chemicals and solvents were reagent grade and were purified according to conventional methods.¹ The metal complexes $[(bpy)_2Pd_2(NO_3)_2](NO_3)_2$, $[(dmbpy)_2Pd_2(NO_3)_2](NO_3)_2$ and $[(phen)_2Pd_2(NO_3)_2](NO_3)_2$ were prepared according to literature procedures.²

Instrumentation

¹H NMR, ¹³C NMR and 2D COSY NMR experiments were performed at 400 MHz on a Bruker Avance III HD 400 spectrometer using tetramethylsilane. ESI-MS measurements were performed with a JEOL Accu-TOF mass spectrometer.

X-Ray structural determinations

X-Ray diffraction data of the crystals of complex $1 \cdot 6PF_6^-$ were carried out at 291 K using synchrotron radiation ($\lambda = 0.80010$ Å) via the 3W1A in the IHEP with the approval of the Beijing Synchrotron Radiation Facility (BSRF). The diffraction data reduction and integration were performed by the HKL2000 software. Most of the non-hydrogen atoms were found using the direct methods program in the Bruker SHELXTL software.

Data for $2 \cdot 6PF_6^-$ and $3 \cdot 6PF_6^-$ were collected at 123 K on a Bruker Smart Apex CCD area detector equipped with a graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å). All the structures were solved by direct methods and refined employing full-matrix least-squares on F² by using SHELXTL (Bruker, 2000) program and expanded using Fourier techniques.³⁻⁴ All non-H atoms of the complexes were refined with anisotropic thermal parameters. The hydrogen atoms were included in idealized positions. In complexes $2 \cdot 12PF_6^-$ and $3 \cdot 12PF_6^-$, the unit cell includes a large region of disordered solvent acetonitrile molecules, which could not be modelled as discrete atomic sites. We employed PLATON/SQUEEZE to calculate the diffraction contribution of the solvent acetonitrile molecules, thereby, to produce a set of solvent-free CH₃CN.Final residuals along with the unit cell, space group, data collection and

refinement parameters are presented in Table S1.

General procedures

Cage 1 (1·6PF₆⁻) Combination of dimetal corners $[(bpy)_2Pd_2(NO_3)_2](NO_3)_2$ (25 mg, 0.034 mmol) with a suspension of **H**₃**L** (9.6 mg, 0.022 mmol) in H₂O (2 ml) and acetone(2 ml), the mixture was stirred for 24 h at room temperature, then removed to the oil-bath of 60 °C and continued stirring for 8 h via a directed self-assembly approach that involves spontaneous deprotonation of the 1H-tripyrazolyl ligands in aqueous solution. Based on preliminary NMR data, gave the desired product 1·6NO₃⁻, as a light-yellow precipitate. A ten-fold excess of KPF₆ was added to the solution which resulted in an immediate deposition, the mixture was continued stirring for 6 h, then the precipitation was filtered, washed with minimum amount of cold water and dried in vacuum to give high yield (87%) of **1** as yellow solid.

The NO₃⁻ salt of **1** as a light-yellow precipitate, ¹H NMR (400 MHz, D₂O, 25 °C, ppm), $\delta = 8.47-8.43$ (d, 12H, bpy–H_{a1}, bpy–H_{b1}), 8.43-8.41 (m, 12H, bpy–H_{c1}), 8.39-8.38 (m, 12H, bpy–H_{a2}, bpy–H_{b2}), 8.34-8.32 (d, 12H, bpy–H_{c2}), 7.78-7.75, 7.66-7.64 (m, 12H, bpy–H_{d1}, bpy–H_{d2}), 8.13, 6.99 (d, 12H, Pz–H₂, H₄), 8.54-8.52, 6.93-6.91 (d, 12H, Ar–H₁, H₃). Elemental analyses calcd (%) for C₁₁₄H₈₄N₃₂O₁₈Pd₆: C, 48.41; H, 2.99; N, 15.84; Found: C, 48.10; H, 3.08; N, 15.90.

The PF₆⁻ salt of **1** was obtained as yellow needle crystal in quantitative yield. ¹H NMR (400 MHz, CD₃CN, 25 °C, ppm), $\delta = 8.35-8.30$ (d, 12H, bpy–H_{a1}, bpy–H_{b1}), 8.27-8.26 (m, 12H, bpy–H_{c1}), 8.26-8.23 (m, 12H, bpy–H_{a2}, bpy–H_{b2}), 7.85-7.84 (m, 12H, bpy–H_{c2}), 7.69-7.63, 7.51-7.45 (m, 12H, bpy–H_{d1}, bpy–H_{d2}), 7.84, 6.82 (d, 12H, Pz–H₂, H₄), 8.37-8.35, 6.95-6.93 (d, 12H, Ar–H₁, H₃). ¹³C NMR (100 MHz, CD₃CN, 25 °C, ppm): δ 157.88, 157.01, 151.22, 151.18, 151.02, 143.62, 142.96, 142.84, 128.56, 127.81, 125.40, 124.87, 124.73, 124.62, 107.24, 68.46, 22.80. ESI-MS (CH₃CN, m/z): 1517.81, 963.54 for [**1**·4PF₆⁻]²⁺, [**1**·3PF₆⁻]³⁺. Elemental analyses calcd (%) for C₁₁₄H₈₄N₂₆F₃₆P₆Pd₆: C, 41.10; H, 2.53; N, 10.9; Found: C, 41.2; H, 2.62; N, 10.66.

Cage 2 $(2 \cdot 6PF_6)$ [(dmbpy)₂Pd₂(NO₃)₂](NO₃)₂ (25 mg, 0.030 mmol) was treated with H₃L (8.9 mg, 0.020 mmol) at a ratio of 3:2 in H₂O (3 ml) and acetone (2 ml), the

mixture was stirred for 24 h at room temperature then removed to the oil-bath of 60 °C and continued stirring for 8 h. A ten-fold excess of KPF₆ was added to the solution which resulted in an immediate deposition, the mixture was continued stirring for 6 h, then the precipitation was filtered, washed with minimum amount of cold water and dried in vacuum to give high yield (83%) of $2 \cdot 6PF_6^-$ as yellow solid.

The NO₃⁻ salt of **2** as a light-yellow precipitate, ¹H NMR (400 MHz, D₂O, 25 °C, ppm) $\delta = 7.80$, 7.72 (d, 12H, dmbpy–H_{a1}, dmbpy–H_{a2}), 7.80-7.78, 7.44-7.43 (d, 12H, dmbpy–H_{b1}, dmbpy–H_{b2}), 7.13-7.12, 6.99-6.97 (m, 12H, dmbpy–H_{c1}, dmbpy–H_{c2}), 2.18, 2.09 (s, 36H, dmbpy–H_{d1}, dmbpy–H_{d2}), 7.55, 6.49 (d, 12H, Pz–H₂, H₄), 8.03-8.01, 6.47-6.45(d, 12H, Ar–H₁, H₃). Elemental analyses calcd (%) for C₁₂₆H₁₂₀N₃₂O₁₈Pd₆: C, 50.29; H, 4.02; N, 14.89; Found: C, 50.38; H, 4.12; N, 14.92.

The PF₆⁻ salt of **2** was obtained as red needle-shaped crystal in quantitative yield. ¹H NMR (400 MHz, CD₃CN, 25 °C, ppm) $\delta = 8.21$, 8.08 (d, 12H, dmbpy–H_{a1}, dmbpy–H_{a2}), 8.08-8.06, 7.65-7.63 (d, 12H, dmbpy–H_{b1}, dmbpy–H_{b2}), 7.48-7.46, 7.28-7.27 (m, 12H, dmbpy–H_{c1}, dmbpy–H_{c2}), 2.58, 2.51 (s, 36H, dmbpy–H_{d1}, dmbpy–H_{d2}), 7.81-7.80, 6.79-6.78 (d, 12H, Pz–H₂, H₄), 8.33-8.31, 6.94-6.92 (d, 12H, Ar–H₁, H₃). ¹³C NMR (100 MHz, CD₃CN, 25°C, ppm): δ 157.32, 156.54, 155.94, 151.08, 150.18, 147.83, 143.58, 128.88, 127.82, 125.61, 125.25, 124.88, 107.12, 68.45, 22.80, 21.80, 21.28, 21.26. ESI-MS (CH₃CN, m/z): 728.73, 1019.63, 1603.42 for [**2**·2PF₆-]⁴⁺, [**2**·3PF₆-]³⁺, [**2**·4PF₆-]²⁺. Elemental analyses calcd (%) for C₁₂₆H₁₂₀N₂₆F₃₆P₆Pd₆ : C, 43.30; H, 3.47; N, 10.42; Found: C, 41.21; H, 4.32; N, 10.45.

Cage 3 ($3.6PF_6^{-}$) [(phen)₂Pd₂(NO₃)₂](NO₃)₂ (25 mg, 0.029 mmol) was treated with **H**₃L (8.5 mg, 0.019 mmol) at a ratio of 3:2 in H₂O (3 ml) and acetone (2 ml) and the mixture was stirred for 24 h at room temperature then removed to the oil-bath of 60 °C and continued stirring for 8 h. A ten-fold excess of KPF₆ was added to the solution which resulted in an immediate deposition, the mixture was continued stirring for 6 h, then the precipitation was filtered, washed with minimum amount of cold water and dried in vacuum to give high yield (78%) of $3.6PF_6^{-}$ as yellow solid.

The NO₃⁻ salt of **3** as a light-yellow precipitate, ¹H NMR (400 MHz, D₂O , 25 °C): $\delta = 8.77-8.75$, 8.72-8.70 (m, 12H, phen-H_{a1}, phen-H_{a2}), 8.68-8.66, 8.31-8.30 (m, 12H, phen-H_{b1}, phen-H_{b2}), 8.06, 7.95 (s, 12H, phen-H_{c1}, phen-H_{c2}) 7.89-7.87, 7.78-

7.77 (t, 12H, phen-H_{d1}, phen-H_{d2}), 8.84-8.38, 7.95-7.91 (d, 12H, Ar - H₁, H₂), 6.86,
6.67-6.64 (d, 12H, Pz-H₄, H₃). Elemental analyses calcd (%) for C₁₂₆H₈₄N₃₂O₁₈Pd₆: C,
50.91; H, 2.85; N, 15.08; Found: C, 51.12; H, 2.91; N, 15.22.

The PF₆⁻ salt of **3** was obtained as yellow needle crystal in quantitative yield. ¹H NMR (400 MHz, CD₃CN , 25 °C): $\delta = 8.84-8.82$, 8.76-8.74 (m, 12H, phen–H_{a1}, phen–H_{a2}), 8.61-8.60, 8.17-8.16 (m, 12H, phen–H_{b1}, phen–H_{b2}), 8.17, 8.16 (s, 12H, phen–H_{c1}, phen-H_{c2}) 7.96-7.93, 7.79-7.76 (t, 12H, phen–H_{d1}, phen–H_{d2}), 8.37-8.34, 7.96-7.94 (d, 12H, Ar–H₁, H₃), 6.86-6.84 (d, 12H, Pz–H₃, H₄). ¹³C NMR (100 MHz, CD₃CN, 25 °C, ppm): δ 152.05, 151.93, 151.66, 151.50, 148.27, 147.82, 147.01, 143.86, 141.68, 131.43, 128.74, 128.43, 128.31, 127.82, 126.80, 125.42, 124.85, 107.32. ESI-MS (CH₃CN, m/z): 549.24, 722.79, 1011.72, 1590.58 for [**3**]⁶⁺, [**3**·PF₆⁻]⁵⁺, [**3**·2PF₆⁻]⁴⁺, [**3**·3PF₆⁻]³⁺, [**3**·4PF₆⁻]²⁺. Elemental analyses calcd (%) for C₁₂₆H₈₄N₂₆F₃₆P₆Pd₆: C, 43.61; H, 2.44; N, 10.49; Found: C, 43.65; H, 2.41; N, 10.52.

Fig. S1 The ¹H NMR spectrum of $1.6NO_3$ in D₂O at 298 K.

Fig. S3 The ¹³C NMR spectrum of $1 \cdot 6PF_6$ in CD₃CN at 298 K.

Fig. S5 The ¹H NMR spectrum of $2 \cdot 6PF_6$ in CD₃CN at 298 K.

Fig. S9 The ¹³C NMR spectrum of $3 \cdot 6PF_6$ in CD₃CN at 298 K.

Fig. S10 The ¹H-¹H COSY spectrum of $1.6PF_6$ - in CD₃CN at 298 K.

Fig. S11 The ¹H-¹H COSY spectrum of $2 \cdot 6PF_6$ in CD₃CN at 298 K.

Fig. S12 The ¹H-¹H COSY spectrum of $3 \cdot 6PF_6^-$ in CD₃CN at 298 K.

Fig. S13 ESI-MS spectra of $2 \cdot 6PF_6^-$ in CH₃CN; the inset shows the isotopic distribution of the species $[2 \cdot 2PF_6^-]^{4+}$.

Fig. S14 ESI-MS spectra of $[2 \cdot 3PF_6^-]^{3+}$ and $[2 \cdot 4PF_6^-]^{2+}$ in CH₃CN.

Fig. S15 ESI-MS spectra of $3.6PF_6^-$ in CH₃CN; the inset shows the isotopic distribution of the species $[3.4PF_6^-]^{2+}$ and $[3]^{6+}$.

Fig. S16 ESI-MS spectra of $[3 \cdot 3PF_6^-]^{3+}$, $[3 \cdot 2PF_6^-]^{4+}$ and $[3 \cdot PF_6^-]^{5+}$ in CH₃CN.

	1 •6PF ₆ ⁻ •10 CH ₃ CN	$1/2(2\cdot 6\mathrm{PF}_{6}^{-}\cdot 2\mathrm{CH}_{3}\mathrm{CN})$	$3 \cdot 6 PF_6^-$
Formula	$C_{134}H_{114}F_{36}N_{36}P_6Pd_6$	$C_{65}H_{56}F_{18}N_{14}P_3Pd_3$	C126 H84N26F36P6Pd6
FW	3736.83	1787.34	3470.41
crystal system	Monoclinic	Orthorhombic	Hexagonal
space group	$P2_1/c$	Pnma	P6/m
a [Å]	18.712(4)	58.295(7)	29.983(4)
b [Å]	38.357(8)	11.9914(14)	29.983(4)
c [Å]	22.714(5)	24.911(3)	11.399(2)
α [°]	90	90	90
β [°]	110.07(3)	90	90
γ [°]	90	90	120
V [Å ³]	15313(6)	17414(4)	8875(3)
Ζ	4	8	2
pcalcd, [g/cm-	1.621	1.363	1.299
3]			
μ [mm-1]	0.812	0.749	0.732
F(000)	7440.0	7112.0	3424.0
2θmax [°]	51.36	50.70	51.36
no. unique data	30809	8031	4392
Parameters	2048	1064	350
GOF [F ²] ^a	1.038	1.020	1.035
$R[F^{2}>2\sigma(F^{2})],$	0.0379	0.1171	0.0779
wR[F ²] ^b	0.1099	0.3293	0.2383

 Table S1. Crystallographic data for complexes 1-3.

[a] GOF = $[w(F_o^2 - F_c^2)^2]/(n - p)^{1/2}$, where n and p denote the number of data points and the number of parameters, respectively. [b] R1 = $(||F_o| - |F_c||)/|F_o|$; wR2 = $[w(F_o^2 - F_c^2)^2]/[w(F_o^2)^2]^{1/2}$, Where w=1/ $[\sigma^2(F_o^2)+(aP)^2+bP]$ and P= $[max(0,F_o^2)+2F_c^2]/3$.

Bond		Bond	
Dist.[Å]		Dist.[Å]	
Pd(1)-N(1)	1.999(3)	Pd(5)-N(13)	2.017(5)
Pd(1)-N(4)	2.004(3)	Pd(5)-N(14)	2.014(3)
Pd(1)-N(25)	2.006(3)	Pd(5)-N(20)	2.011(3)
Pd(1)-N(26)	2.009(3)	Pd(6)-N(15)	2.016(3)
Pd(2)-N(2)	2.032(3)	Pd(6)-N(17)	2.002(3)
Pd(2)-N(23)	2.022(3)	Pd(6)-N(18)	2.008(3)
Pd(2)-N(24)	2.021(3)	Pd(6)-N(16)	1.996(3)
Pd(2)-N(3)	2.021(3)	N(2)-N(1)	1.381(4)
Pd(3)-N(7)	1.999(3)	N(4)-N(3)	1.358(4)
Pd(3)-N(6)	2.041(3)	N(6)-N(9)	1.381(4)
Pd(3)-N(21)	2.013(3)	N(7)-N(8)	1.367(4)
Pd(3)-N(22)	2.019(3)	N(13)-N(16)	1.364(4)
Pd(4)-N(8)	2.012(3)	N(14)-N(15)	1.365(4)
Pd(4)-N(11)	2.011(3)	Pd(1)-Pd(2)	3.1596(7)
Pd(4)-N(10)	2.006(3)	Pd(3)-Pd(4)	3.0833(7)
Pd(4)-N(9)	2.006(5)	Pd(6)-Pd(5)	3.1266(6)
Pd(5)-N(19)	2.025(3)		
Bond		Bond	
Angel[°]		Angel[°]	
N(1)-Pd(1)-Pd(2)	62.34(8)	N(8)-Pd(4)-Pd(3)	64.25(7)
N(1)-Pd(1)-N(4)	87.11(11)	N(11)-Pd(4)-Pd(3)	119.20(8)
N(1)-Pd(1)-N(25)	95.29(11)	N(11)-Pd(4)-N(8)	97.04(12)
N(1)-Pd(1)-N(26)	176.51(12)	N(10)-Pd(4)-Pd(3)	112.48(8)
N(4)-Pd(1)-Pd(2)	62.60(7)	N(10)-Pd(4)-N(8)	175.07(11)
N(4)-Pd(1)-N(26)	96.30(13)	N(10)-Pd(4)-N(11)	81.28(12)
N(25)-Pd(1)-Pd(2)	119.71(8)	N(9)-Pd(4)-Pd(3)	63.95(8)
N(25)-Pd(1)-N(4)	177.27(11)	N(9)-Pd(4)-N(8)	86.38(12)
N(25)-Pd(1)-N(26)	81.28(12)	N(9)-Pd(4)-N(11)	176.12(11)
N(26)-Pd(1)-Pd(2)	119.96(10)	N(9)-Pd(4)-N(10)	95.46(12)
N(2)-Pd(2)-Pd(1)	65.12(7)	N(19)-Pd(5)-Pd(6)	118.52(7)
N(23)-Pd(2)-Pd(1)	109.91(8)	N(19)-Pd(5)-N(14)	99.79(11)
N(23)-Pd(2)-N(2)	174.00(10)	N(13)-Pd(5)-Pd(6)	63.68(7)
N(24)-Pd(2)-Pd(1)	113.99(8)	N(13)-Pd(5)-N(19)	174.80(11)
N(24)-Pd(2)-N(2)	97.80(11)	N(13)-Pd(5)-N(14)	85.40(11)
N(24)-Pd(2)-N(23)	81.00(11)	N(14)-Pd(5)-Pd(6)	63.68(7)
N(3)-Pd(2)-Pd(1)	64.14(7)	N(20)-Pd(5)-Pd(6)	111.27(8)
N(3)-Pd(2)-N(2)	85.63(11)	N(20)-Pd(5)-N(19)	80.89(11)
N(3)-Pd(2)-N(23)	95.21(11)	N(20)-Pd(5)-N(13)	93.93(11)
N(3)-Pd(2)-N(24)	175.00(11)	N(20)-Pd(5)-N(14)	175.77(10)
N(7)-Pd(3)-Pd(4)	65.08(8)	N(15)-Pd(6)-Pd(5)	63.19(8)

Table S2. Selected bond distances (Å) and angles (°) of complex $1.6PF_{6}$.

N(7)-Pd(3)-N(6)	84.82(11)	N(17)-Pd(6)-Pd(5)	112.16(8)
N(7)-Pd(3)-N(21)	96.04(11)	N(17)-Pd(6)-N(15)	172.50(12)
N(7)-Pd(3)-N(22)	174.12(11)	N(17)-Pd(6)-N(18)	81.07(12)
N(6)-Pd(3)-Pd(4)	66.11(7)	N(18)-Pd(6)-Pd(5)	118.03(8)
N(21)-Pd(3)-Pd(4)	110.79(7)	N(18)-Pd(6)-N(15)	95.83(12)
N(21)-Pd(3)-N(6)	176.09(11)	N(16)-Pd(6)-Pd(5)	63.19(8)
N(21)-Pd(3)-N(22)	81.18(11)	N(16)-Pd(6)-N(15)	86.91(12)
N(22)-Pd(3)-Pd(4)	110.96(9)	N(16)-Pd(6)-N(17)	96.20(12)
N(22)-Pd(3)-N(6)	97.61(11)	N(16)-Pd(6)-N(18)	177.26(12)

Bond		Bond	
Dist.[Å]		Dist.[Å]	
Pd(1)-N(1)	1.996(11)	Pd(4)-N(11)	2.015(13)
Pd(1)-N(1)#1	1.995(11)	Pd(5)-N(5)#1	1.997(10)
Pd(1)-N(8)#1	2.006(11)	Pd(5)-N(5)	1.997(10)
Pd(1)-N(8)	2.006(11)	Pd(5)-N(12)	2.006(10)
Pd(2)-N(2)	2.011(11)	Pd(5)-N(12)#1	2.006(10)
Pd(2)-N(2)#1	2.011(11)	Pd(6)-N(6)	2.007(10)
Pd(2)-N(9)	2.017(11)	Pd(6)-N(6)#1	2.007(10)
Pd(2)-N(9)#1	2.017(11)	Pd(6)-N(13)#1	2.004(10)
Pd(3)-N(3)	1.980(16)	Pd(6)-N(13)	2.004(10)
Pd(3)-N(3)#1	1.980(16)	N(1)-N(2)	1.374(13)
Pd(3)-N(10)	1.983(17)	N(3)-N(4)	1.387(16)
Pd(3)-N(10)#1	1.983(17)	N(5)-N(6)	1.380(12)
Pd(4)-N(4)#1	1.987(14)	Pd(1)-Pd(2)	3.144(2)
Pd(4)-N(4)	1.987(14)	Pd(3)-Pd(4)	3.161(2)
Pd(4)-N(11)#1	2.015(13)	Pd(5)-Pd(6)	3.1510(19)
Bond		Bond	
Angel[°]		Angel[°]	
N(1)#1-Pd(1)-Pd(2)	62.9(3)	N(4)#1-Pd(4)-Pd(3)	64.5(4)
N(1)-Pd(1)-Pd(2)	62.9(3)	N(4)-Pd(4)-Pd(3)	64.5(4)
N(1)#1-Pd(1)-N(1)	87.2(7)	N(4)#1-Pd(4)-N(4)	85.0(9)
N(1)-Pd(1)-N(8)#1	176.9(5)	N(4)-Pd(4)-N(11)	176.6(5)
N(1)#1-Pd(1)-N(8)#1	95.9(5)	N(4)#1-Pd(4)-N(11)	96.6(6)
N(1)#1-Pd(1)-N(8)	176.9(5)	N(4)#1-Pd(4)-N(11)#1	176.6(5)
N(1)-Pd(1)-N(8)	95.9(5)	N(4)-Pd(4)-N(11)#1	96.6(6)
N(8)-Pd(1)-Pd(2)	118.6(3)	N(11)#1-Pd(4)-Pd(3)	113.4(3)
N(8)#1-Pd(1)-Pd(2)	118.6(3)	N(11)-Pd(4)-Pd(3)	113.4(3)
N(8)#1-Pd(1)-N(8)	81.0(7)	N(11)-Pd(4)-N(11)#1	81.6(7)
N(2)-Pd(2)-Pd(1)	64.5(3)	N(5)-Pd(5)-Pd(6)	63.0(3)
N(2)#1-Pd(2)-Pd(1)	64.5(3)	N(5)#1-Pd(5)-Pd(6)	63.0(3)
N(2)-Pd(2)-N(2)#1	83.8(6)	N(5)-Pd(5)-N(5)#1	86.6(6)
N(2)#1-Pd(2)-N(9)#1	98.2(4)	N(5)#1-Pd(5)-N(12)	95.8(4)
N(2)-Pd(2)-N(9)	98.2(4)	N(5)-Pd(5)-N(12)#1	95.8(4)
N(2)#1-Pd(2)-N(9)	176.4(4)	N(5)#1-Pd(5)-N(12)#1	177.1(4)
N(2)-Pd(2)-N(9)#1	176.4(4)	N(5)-Pd(5)-N(12)	177.1(4)
N(9)-Pd(2)-Pd(1)	113.6(3)	N(12)#1-Pd(5)-Pd(6)	116.8(3)
N(9)#1-Pd(2)-Pd(1)	113.6(3)	N(12)-Pd(5)-Pd(6)	116.8(3)
N(9)-Pd(2)-N(9)#1	79.7(6)	N(12)#1-Pd(5)-N(12)	81.7(6)
N(3)#1-Pd(3)-Pd(4)	62.2(4)	N(6)#1-Pd(6)-Pd(5)	64.4(3)
N(3)-Pd(3)-Pd(4)	62.2(4)	N(6)-Pd(6)-Pd(5)	64.4(3)

Table S3. Selected bond distances (Å) and angles (°) of complex $2 \cdot 6PF_{6}^{-}$.

N(3)#1-Pd(3)-N(3)	86.3(9)	N(6)#1-Pd(6)-N(6)	85.3(6)
N(3)#1-Pd(3)-N(10)#1	96.0(7)	N(13)-Pd(6)-Pd(5)	115.9(3)
N(3)-Pd(3)-N(10)#1	177.7(7)	N(13)#1-Pd(6)-Pd(5)	115.9(3)
N(3)#1-Pd(3)-N(10)	177.7(7)	N(13)#1-Pd(6)-N(6)#1	177.8(4)
N(3)-Pd(3)-N(10)	96.0(7)	N(13)-Pd(6)-N(6)#1	96.8(4)
N(10)#1-Pd(3)-Pd(4)	119.0(4)	N(13)#1-Pd(6)-N(6)	96.8(4)
N(10)-Pd(3)-Pd(4)	119.0(4)	N(13)-Pd(6)-N(6)	177.8(4)
N(10)-Pd(3)-N(10)#1	81.7(10)	N(13)#1-Pd(6)-N(13)	81.1(6)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z

Bond		Bond	
Dist.[Å]		Dist.[Å]	
Pd(1)-Pd(2)	3.2963(11)	N(5)-C(16)	1.392(10)
Pd(1)-N(5)#1	2.024(6)	N(5)-C(20A)	1.23(2)
Pd(1)-N(5)	2.024(6)	N(3)-C(5)	1.294(11)
Pd(1)-N(1)	2.004(6)	N(3)-C(1)	1.370(10)
Pd(1)-N(1)#1	2.004(6)	N(2)-N(1)	1.374(8)
Pd(2)-N(3)#1	2.027(6)	N(2)-C(7)	1.325(10)
Pd(2)-N(3)	2.027(6)	N(1)-C(9)	1.337(9)
Pd(2)-N(2)	2.006(6)	N(4)-C(13)#2	1.421(6)
Pd(2)-N(2)#1	2.006(6)	N(4)-C(13)	1.421(6)
N(5)-C(20)	1.39(2)	N(4)-C(13)#3	1.421(6)
Bond		Bond	
Angel[°]		Angel[°]	
N(5)#1-Pd(1)-Pd(2)	117.19(18)	N(2)-Pd(2)-N(3)#1	94.5(3)
N(5)-Pd(1)-Pd(2)	117.19(18)	N(2)-Pd(2)-N(3)	175.1(2)
N(5)#1-Pd(1)-N(5)	82.3(4)	N(2)#1-Pd(2)-N(2)	89.1(4)
N(1)#1-Pd(1)-Pd(2)	62.71(16)	C(20)-N(5)-Pd(1)	126.3(10)
N(1)-Pd(1)-Pd(2)	62.71(16)	C(20)-N(5)-C(16)	119.2(11)
N(1)-Pd(1)-N(5)#1	177.7(3)	C(16)-N(5)-Pd(1)	111.9(5)
N(1)#1-Pd(1)-N(5)	177.7(3)	C(20A)-N(5)-Pd(1)	130.1(10)
N(1)#1-Pd(1)-N(5)#1	95.7(3)	C(20A)-N(5)-C(16)	116.5(11)
N(1)-Pd(1)-N(5)	95.7(3)	C(5)-N(3)-Pd(2)	130.2(6)
N(1)-Pd(1)-N(1)#1	86.3(3)	C(5)-N(3)-C(1)	118.0(7)
N(3)#1-Pd(2)-Pd(1)	125.00(18)	C(1)-N(3)-Pd(2)	111.6(5)
N(3)-Pd(2)-Pd(1)	125.00(18)	N(1)-N(2)-Pd(2)	121.9(5)
N(3)-Pd(2)-N(3)#1 81.7(4)		C(7)-N(2)-Pd(2)	128.0(5)
N(2)#1-Pd(2)-Pd(1)	59.76(17)	C(7)-N(2)-N(1)	108.9(6)
N(2)-Pd(2)-Pd(1)	59.76(17)	N(2)-N(1)-Pd(1)	115.0(4)
N(2)#1-Pd(2)-N(3)	94.5(3)	C(9)-N(1)-Pd(1)	137.0(5)
N(2)#1-Pd(2)-N(3)#1	175.1(2)		

Table S4. Selected bond distances (Å) and angles (°) of complex $3.6PF_{6}$.

Symmetry transformations used to generate equivalent atoms: #1 x,y,-z+2

Fig. S17 The molecular structure of cations of 1, 2, 3. The counterions, hydrogen atoms and solvent molecules are omitted for clarity.

Fig. S18 Fluorescence emission spectra of H₃L and $1.6PF_{6}$, $2.6PF_{6}$, $3.6PF_{6}$ in DMSO/H₂O ((1:2, v/v) $\lambda_{ex} = 320$ nm).

Fig. S19 Changes in fluorescent intensity for cage 2 (1.0×10^{-5} M) in CH₃CN/H₂O (1:2, v/v) upon addition of different anions (Na⁺ salts in H₂O).

Fig. S21 Changes in fluorescent intensity for cage 3 (1.0×10^{-5} M) in CH₃CN/H₂O (1:2, v/v) upon addition of different anions (Na⁺ salts in H₂O).

Fig. S22 Change in fluorescent intensity for cage $3(1.0 \times 10^{-5} \text{ M})$ in CH₃CN/H₂O (1:2, v/v) after addition of various concentration of HSO₃⁻ anions (Na⁺ salts in H₂O).

Fig. S23 ¹H NMR spectra of H_3L (a), [(bpy)₂Pd₆L₂]⁶⁺(cage 1) (b), cage 1 + NaHSO₃ (c) and (bpy)Pd(SO₃)₂²⁻(d) in DMSO-d6/D₂O (1:2, v/v).

Fig. S24 ¹H NMR spectra of H_3L (a), [(dmbpy)₂Pd₆L₂]⁶⁺ (cage 2) (b), cage 2 + NaHSO₃ (c) and (dmbpy)Pd(SO₃)₂²⁻ (d) in DMSO-d6/D₂O (1:2, v/v).

Fig. S25 ¹H NMR spectra of H_3L (a), [(phen)₂Pd₆L₂]⁶⁺ (cage 3) (b), cage 3 + NaHSO₃ (c) and (phen)Pd(SO₃)₂²⁻ (d) in DMSO-d6/D₂O (1:2, v/v).

Fig. S26 The molecular structure of anion of $(bpy)Pd(SO_3)_2^{2-}$. The counterions, hydrogen atoms and solvent molecules are omitted for clarity The selected distances (Å) bond angles (°): (Pd1-N2 2.124(3), Pd1-N1 2.141(3), Pd1-S1 2.2442(9), Pd1-S2 2.2544(9), N2-Pd1-N1 77.97(13), N2-Pd1-S1 169.96(9), N1-Pd1-S1 96.53(10), N2-Pd1-S2 96.10(10), N1-Pd1-S2 165.06(10), S1-Pd1-S2 91.19(3)).

Fig. S27 Changes in fluorescent intensity for cage 1, cage 2, cage 3 (1.0×10^{-5} M) in CH₃CN/H₂O (1:2, v/v) after addition of SO₂ gas.

Fig. S28 ¹H NMR spectra of cage 1 (a), cage $1 + \text{NaHSO}_4$ (b) and cage $1 + \text{NaHSO}_4 + \text{NaHSO}_3$ (c) in DMSO-d6/D₂O (1:2, v/v).

Fig. S29 Changes in fluorescent intensity for cage **1** (1.0×10^{-5} M) in CH₃CN/H₂O (1:2, v/v) after addition of NaHSO₄ and mixture of NaHSO₄ and NaHSO₃ salt.

Fig. S30 Changes in fluorescent intensity for cage 1 (1.0×10^{-5} M) in CH₃CN/H₂O (1:2, v/v) after addition of various equivalents of HSO₄⁻.

Fig. S31 ¹H NMR spectra of concentrated HNO₃ (top) and cage **1** + concentrated HNO₃ (down) in DMSO-d6/D₂O (1:2, v/v).

- 1. W. L. F. Armarego and D. D. Perrin, *Purification of Laboratory Chemicals, Butterworth Heinemann,* Oxford, U. K., 4th edn, 1997.
- 2. S.-Y. Yu, M. Fujita and K. Yamaguchi, J. Chem. Soc., Dalton. Trans., 2001, 3145.
- 3. Sheldrick, G. M. SHELXS-97 (Univ. Göttingen, 1990).
- 4. Sheldrick, G. M. SHELXL-97 (Univ. Göttingen, 1997).