Supporting Information

Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration

Carlos Echaide-Górriz, Marta Navarro, Carlos Téllez, Joaquín Coronas*

Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain

*Corresponding author: coronas@unizar.es

MOF SYNTHESIS

MIL-101(Cr) was crystalized following a hydrothermal synthesis,¹ based on the first reported synthesis by Khan et al:² 2.001 g of Cr(NO₃)₃·9H₂O (\leq 98%, Sigma Aldrich) and 0.830 g of terephthalic acid (98%, Sigma Aldrich) were dissolved in 25 mL of deionized water. The obtained solution was autoclaved at 220 °C during 8 h. The synthesized nanocrystals were activated as follows: firstly, by two stages of washing with deionized water and centrifugation at 10,000 rpm during 15 min, and secondly by treatment at 200 °C in an autoclave with DMF (99.5%, Scharlau) during 24 h. Finally, the nanocrystals were washed overnight with methanol (99.9%, Scharlau) under reflux followed by two stages of washing with methanol at room temperature and centrifuged at 10,000 rpm during 15 min.

Nano ZIF-11 crystals were synthesized following the method reported by Sanchez-Laínez et al.,³ which involves the preparation of two solutions. Solution 1: 0.24 g of benzimidazole (98%, Sigma Aldrich) was mixed with 6.40 g of methanol, 9.20 g of toluene (\geq 99.5%, Sigma Aldrich) and 2.40 g of NH₄OH (25%, Panreac). Solution 2: 0.22 g of zinc acetate (Sigma Aldrich) was dissolved in 3.20 g of methanol. Both solutions were mixed and immediately centrifuged at 10,000 rpm during 7 min. The obtained nanoparticles were activated by three stages of washing with methanol at room temperature and centrifugation at 10,000 rpm during 7 min.

MOF CHARACTERIZATION

Fig. S1. XRD patterns of nano ZIF-11 (A) and MIL-101(Cr) (B). TGA diagrams of nano ZIF-11 (C) and MIL-101(Cr) (D)

MEMBRANE CHARACTERIZATION

Element	Atomic (%)
С	51.5
0	37.4
Cr	10.9
Zn	0.1

Table S1. EDX	quantification	of the whole	area contained	in Fig.	S2.
---------------	----------------	--------------	----------------	---------	-----

 Table S2. MOF content in non-supported MOF-PA nanocomposites

	MOF content in PA		
	Theoretical (%)	Experimental (%)	
MIL-101(Cr)		73.7	
ZIF-11	61.2	29.0	
MIL-101(Cr)+ZIF-11		46.1	

Table S3. Permeance and rejection values with errors for the four membrane types tested in this work. In general, two membranes were tested for every case. Conditions: 19 °C and 20 bar of feed pressure.

	Methanol + SY			
	Permeance (L·m ⁻² ·h ⁻¹ ·bar ⁻¹)	Error (L·m ⁻² ·h ⁻¹ ·bar ⁻¹)	Rejection (%)	Error (%)
TFC	3.3	0.9	91.0	4.7
TFNMIL101	3.9	1.0	91.1	4.1
TFNZIF11	4.9	1.0	84.1	0.8
TFNMIL101- ZIF11	4.8	1.2	87.9	2.4
	Methanol + AO			
	Permeance (L·m ⁻² ·h ⁻¹ ·bar ⁻¹)	Error (L·m ⁻² ·h ⁻¹ ·bar ⁻¹)	Rejection (%)	Error (%)
TFC	2.6	0.1	92.8	8.7
TFNMIL101	3.1	0.1	99.0	1.4
TFNZIF11	3.1	0.3	98.1	5.7
TFNMIL101- ZIF11	2.9	0.6	98.5	2.6

Fig. S2. SEM of a TFC membrane with no post-treatment (left) and a TFN membrane with a DMF filtration post-treatment (right)

Membranes	Contact angle (°)
TFC	71 ± 2
TFNZIF-11	72 ± 3
TFNMIL-101	57 ± 4
TFNMIL-101+ZIF-11	71 ± 5

Table S4. Contact angles of the synthesized membranes.

Fig. S3. Effect in the OSN of different proportions (written in brackets) of MOFs mixtures embedded in the thin film. "M" and "Z" represents MIL-101(Cr) and ZIF-11 respectively

Fig. S4. Evolution of permeance of solvent through a TFC membrane pos-treated with DMF filtration in time. The feed solution consisted of methanol and AO and the test was carried out in the same dead-end module used for the other experiments in this work.

Fig. S5. Linear fit (Arrhenius plot) corresponding to permeate data in Fig. 3 when filtering methanol with SY (black) and when filtering pure methanol (orange).

NOTES AND REFERENCES

- 1. T. Zhao, F. Jeremias, I. Boldog, B. Nguyen, S. K. Henninger and C. Janiak, *Dalton Trans.*, 2015, **44**, 16791-16801.
- N. A. Khan, I. J. Kang, H. Y. Seok and S. H. Jhung, *Chem. Eng. J.*, 2011, 166, 1152-1157.
- 3. J. Sanchez-Lainez, B. Zornoza, A. Mayoral, A. Berenguer-Murcia, D. Cazorla-Amoros, C. Tellez and J. Coronas, *J. Mater. Chem. A*, 2015, **3**, 6549-6556.